Deep learning with autoencoders and LSTM for ENSO forecasting

El Niño Southern Oscillation (ENSO) is the prominent recurrent climatic pattern in the tropical Pacific Ocean with global impacts on regional climates. This study utilizes deep learning to predict the Niño 3.4 index by encoding non-linear sea surface temperature patterns in the tropical Pacific usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate dynamics 2024-06, Vol.62 (6), p.5683-5697
Hauptverfasser: Ibebuchi, Chibuike Chiedozie, Richman, Michael B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5697
container_issue 6
container_start_page 5683
container_title Climate dynamics
container_volume 62
creator Ibebuchi, Chibuike Chiedozie
Richman, Michael B.
description El Niño Southern Oscillation (ENSO) is the prominent recurrent climatic pattern in the tropical Pacific Ocean with global impacts on regional climates. This study utilizes deep learning to predict the Niño 3.4 index by encoding non-linear sea surface temperature patterns in the tropical Pacific using an autoencoder neural network. The resulting encoded patterns identify crucial centers of action in the Pacific that serve as predictors of the ENSO mode. These patterns are utilized as predictors for forecasting the Niño 3.4 index with a lead time of at least 6 months using the Long Short-Term Memory (LSTM) deep learning model. The analysis uncovers multiple non-linear dipole patterns in the tropical Pacific, with anomalies that are both regionalized and latitudinally oriented that should support a single inter-tropical convergence zone for modeling efforts. Leveraging these encoded patterns as predictors, the LSTM - trained on monthly data from 1950 to 2007 and tested from 2008 to 2022 - shows fidelity in predicting the Niño 3.4 index. The encoded patterns captured the annual cycle of ENSO with a 0.94 correlation between the actual and predicted Niño 3.4 index for lag 12 and 0.91 for lags 6 and 18. Additionally, the 6-month lag predictions excel in detecting extreme ENSO events, achieving an 85% hit rate, outperforming the 70% hit rate at lag 12 and 55% hit rate at lag 18. The prediction accuracy peaks from November to March, with correlations ranging from 0.94 to 0.96. The average correlations in the boreal spring were as large as 0.84, indicating the method has the capability to decrease the spring predictability barrier.
doi_str_mv 10.1007/s00382-024-07180-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3096434879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153738978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-aa95121e693630640ffa680d287b095becd34e9a5982bea5666643673ba47e413</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKeAFy_R2cwmu3vwILV-QLWH1vOySSY1pU3qboL4790aQfDgXGYYnnkZHsbOOVxxAHntAVAlMSQiBskVxOqAjbjAsFJaHLIRaIRYpjI9ZiferwG4yGQyYjd3RLtoQ9Y1dbOKPuruLbJ911JTtCU5H9mmjGaL5XNUtS6avizm-4EK67vAn7Kjym48nf30MXu9ny4nj_Fs_vA0uZ3FBQrZxdbqlCecMo0ZQiagqmymoEyUzEGnORUlCtI21SrJyaZZKIGZxNwKSYLjmF0OuTvXvvfkO7OtfUGbjW2o7b1BnqJEpaUK6MUfdN32rgnfGQQdYoWSOlDJQBWu9d5RZXau3lr3aTiYvVEzGDXBqPk2avbROBz5ADcrcr_R_1x9AStNdhI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096434879</pqid></control><display><type>article</type><title>Deep learning with autoencoders and LSTM for ENSO forecasting</title><source>Springer Nature - Complete Springer Journals</source><creator>Ibebuchi, Chibuike Chiedozie ; Richman, Michael B.</creator><creatorcontrib>Ibebuchi, Chibuike Chiedozie ; Richman, Michael B.</creatorcontrib><description>El Niño Southern Oscillation (ENSO) is the prominent recurrent climatic pattern in the tropical Pacific Ocean with global impacts on regional climates. This study utilizes deep learning to predict the Niño 3.4 index by encoding non-linear sea surface temperature patterns in the tropical Pacific using an autoencoder neural network. The resulting encoded patterns identify crucial centers of action in the Pacific that serve as predictors of the ENSO mode. These patterns are utilized as predictors for forecasting the Niño 3.4 index with a lead time of at least 6 months using the Long Short-Term Memory (LSTM) deep learning model. The analysis uncovers multiple non-linear dipole patterns in the tropical Pacific, with anomalies that are both regionalized and latitudinally oriented that should support a single inter-tropical convergence zone for modeling efforts. Leveraging these encoded patterns as predictors, the LSTM - trained on monthly data from 1950 to 2007 and tested from 2008 to 2022 - shows fidelity in predicting the Niño 3.4 index. The encoded patterns captured the annual cycle of ENSO with a 0.94 correlation between the actual and predicted Niño 3.4 index for lag 12 and 0.91 for lags 6 and 18. Additionally, the 6-month lag predictions excel in detecting extreme ENSO events, achieving an 85% hit rate, outperforming the 70% hit rate at lag 12 and 55% hit rate at lag 18. The prediction accuracy peaks from November to March, with correlations ranging from 0.94 to 0.96. The average correlations in the boreal spring were as large as 0.84, indicating the method has the capability to decrease the spring predictability barrier.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-024-07180-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Annual variations ; Climate prediction ; Climatology ; Coding ; Convergence zones ; Correlation ; Deep learning ; Dipoles ; Earth and Environmental Science ; Earth Sciences ; El Nino ; El Nino phenomena ; El Nino-Southern Oscillation event ; Forecasting ; Geophysics/Geodesy ; Lead time ; Long short-term memory ; Machine learning ; Neural networks ; Oceanography ; Original Article ; Pacific Ocean ; prediction ; Predictions ; Regional climates ; Sea surface temperature ; Southern Oscillation ; spring ; Spring (season) ; Surface temperature ; surface water temperature ; Temperature patterns ; Tropical Convergence Zone</subject><ispartof>Climate dynamics, 2024-06, Vol.62 (6), p.5683-5697</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c347t-aa95121e693630640ffa680d287b095becd34e9a5982bea5666643673ba47e413</cites><orcidid>0000-0001-6010-2330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-024-07180-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-024-07180-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Ibebuchi, Chibuike Chiedozie</creatorcontrib><creatorcontrib>Richman, Michael B.</creatorcontrib><title>Deep learning with autoencoders and LSTM for ENSO forecasting</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>El Niño Southern Oscillation (ENSO) is the prominent recurrent climatic pattern in the tropical Pacific Ocean with global impacts on regional climates. This study utilizes deep learning to predict the Niño 3.4 index by encoding non-linear sea surface temperature patterns in the tropical Pacific using an autoencoder neural network. The resulting encoded patterns identify crucial centers of action in the Pacific that serve as predictors of the ENSO mode. These patterns are utilized as predictors for forecasting the Niño 3.4 index with a lead time of at least 6 months using the Long Short-Term Memory (LSTM) deep learning model. The analysis uncovers multiple non-linear dipole patterns in the tropical Pacific, with anomalies that are both regionalized and latitudinally oriented that should support a single inter-tropical convergence zone for modeling efforts. Leveraging these encoded patterns as predictors, the LSTM - trained on monthly data from 1950 to 2007 and tested from 2008 to 2022 - shows fidelity in predicting the Niño 3.4 index. The encoded patterns captured the annual cycle of ENSO with a 0.94 correlation between the actual and predicted Niño 3.4 index for lag 12 and 0.91 for lags 6 and 18. Additionally, the 6-month lag predictions excel in detecting extreme ENSO events, achieving an 85% hit rate, outperforming the 70% hit rate at lag 12 and 55% hit rate at lag 18. The prediction accuracy peaks from November to March, with correlations ranging from 0.94 to 0.96. The average correlations in the boreal spring were as large as 0.84, indicating the method has the capability to decrease the spring predictability barrier.</description><subject>Annual variations</subject><subject>Climate prediction</subject><subject>Climatology</subject><subject>Coding</subject><subject>Convergence zones</subject><subject>Correlation</subject><subject>Deep learning</subject><subject>Dipoles</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>El Nino</subject><subject>El Nino phenomena</subject><subject>El Nino-Southern Oscillation event</subject><subject>Forecasting</subject><subject>Geophysics/Geodesy</subject><subject>Lead time</subject><subject>Long short-term memory</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Oceanography</subject><subject>Original Article</subject><subject>Pacific Ocean</subject><subject>prediction</subject><subject>Predictions</subject><subject>Regional climates</subject><subject>Sea surface temperature</subject><subject>Southern Oscillation</subject><subject>spring</subject><subject>Spring (season)</subject><subject>Surface temperature</subject><subject>surface water temperature</subject><subject>Temperature patterns</subject><subject>Tropical Convergence Zone</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1Lw0AQhhdRsFb_gKeAFy_R2cwmu3vwILV-QLWH1vOySSY1pU3qboL4790aQfDgXGYYnnkZHsbOOVxxAHntAVAlMSQiBskVxOqAjbjAsFJaHLIRaIRYpjI9ZiferwG4yGQyYjd3RLtoQ9Y1dbOKPuruLbJ911JTtCU5H9mmjGaL5XNUtS6avizm-4EK67vAn7Kjym48nf30MXu9ny4nj_Fs_vA0uZ3FBQrZxdbqlCecMo0ZQiagqmymoEyUzEGnORUlCtI21SrJyaZZKIGZxNwKSYLjmF0OuTvXvvfkO7OtfUGbjW2o7b1BnqJEpaUK6MUfdN32rgnfGQQdYoWSOlDJQBWu9d5RZXau3lr3aTiYvVEzGDXBqPk2avbROBz5ADcrcr_R_1x9AStNdhI</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Ibebuchi, Chibuike Chiedozie</creator><creator>Richman, Michael B.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-6010-2330</orcidid></search><sort><creationdate>20240601</creationdate><title>Deep learning with autoencoders and LSTM for ENSO forecasting</title><author>Ibebuchi, Chibuike Chiedozie ; Richman, Michael B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-aa95121e693630640ffa680d287b095becd34e9a5982bea5666643673ba47e413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annual variations</topic><topic>Climate prediction</topic><topic>Climatology</topic><topic>Coding</topic><topic>Convergence zones</topic><topic>Correlation</topic><topic>Deep learning</topic><topic>Dipoles</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>El Nino</topic><topic>El Nino phenomena</topic><topic>El Nino-Southern Oscillation event</topic><topic>Forecasting</topic><topic>Geophysics/Geodesy</topic><topic>Lead time</topic><topic>Long short-term memory</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Oceanography</topic><topic>Original Article</topic><topic>Pacific Ocean</topic><topic>prediction</topic><topic>Predictions</topic><topic>Regional climates</topic><topic>Sea surface temperature</topic><topic>Southern Oscillation</topic><topic>spring</topic><topic>Spring (season)</topic><topic>Surface temperature</topic><topic>surface water temperature</topic><topic>Temperature patterns</topic><topic>Tropical Convergence Zone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibebuchi, Chibuike Chiedozie</creatorcontrib><creatorcontrib>Richman, Michael B.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibebuchi, Chibuike Chiedozie</au><au>Richman, Michael B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning with autoencoders and LSTM for ENSO forecasting</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>62</volume><issue>6</issue><spage>5683</spage><epage>5697</epage><pages>5683-5697</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>El Niño Southern Oscillation (ENSO) is the prominent recurrent climatic pattern in the tropical Pacific Ocean with global impacts on regional climates. This study utilizes deep learning to predict the Niño 3.4 index by encoding non-linear sea surface temperature patterns in the tropical Pacific using an autoencoder neural network. The resulting encoded patterns identify crucial centers of action in the Pacific that serve as predictors of the ENSO mode. These patterns are utilized as predictors for forecasting the Niño 3.4 index with a lead time of at least 6 months using the Long Short-Term Memory (LSTM) deep learning model. The analysis uncovers multiple non-linear dipole patterns in the tropical Pacific, with anomalies that are both regionalized and latitudinally oriented that should support a single inter-tropical convergence zone for modeling efforts. Leveraging these encoded patterns as predictors, the LSTM - trained on monthly data from 1950 to 2007 and tested from 2008 to 2022 - shows fidelity in predicting the Niño 3.4 index. The encoded patterns captured the annual cycle of ENSO with a 0.94 correlation between the actual and predicted Niño 3.4 index for lag 12 and 0.91 for lags 6 and 18. Additionally, the 6-month lag predictions excel in detecting extreme ENSO events, achieving an 85% hit rate, outperforming the 70% hit rate at lag 12 and 55% hit rate at lag 18. The prediction accuracy peaks from November to March, with correlations ranging from 0.94 to 0.96. The average correlations in the boreal spring were as large as 0.84, indicating the method has the capability to decrease the spring predictability barrier.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-024-07180-8</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6010-2330</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0930-7575
ispartof Climate dynamics, 2024-06, Vol.62 (6), p.5683-5697
issn 0930-7575
1432-0894
language eng
recordid cdi_proquest_journals_3096434879
source Springer Nature - Complete Springer Journals
subjects Annual variations
Climate prediction
Climatology
Coding
Convergence zones
Correlation
Deep learning
Dipoles
Earth and Environmental Science
Earth Sciences
El Nino
El Nino phenomena
El Nino-Southern Oscillation event
Forecasting
Geophysics/Geodesy
Lead time
Long short-term memory
Machine learning
Neural networks
Oceanography
Original Article
Pacific Ocean
prediction
Predictions
Regional climates
Sea surface temperature
Southern Oscillation
spring
Spring (season)
Surface temperature
surface water temperature
Temperature patterns
Tropical Convergence Zone
title Deep learning with autoencoders and LSTM for ENSO forecasting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20with%20autoencoders%20and%20LSTM%20for%20ENSO%20forecasting&rft.jtitle=Climate%20dynamics&rft.au=Ibebuchi,%20Chibuike%20Chiedozie&rft.date=2024-06-01&rft.volume=62&rft.issue=6&rft.spage=5683&rft.epage=5697&rft.pages=5683-5697&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-024-07180-8&rft_dat=%3Cproquest_cross%3E3153738978%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096434879&rft_id=info:pmid/&rfr_iscdi=true