How to Hide a Clique?
In the well known planted clique problem, a clique (or alternatively, an independent set) of size k is planted at random in an Erdos-Renyi random G ( n , p ) graph, and the goal is to design an algorithm that finds the maximum clique (or independent set) in the resulting graph. We introduce a varia...
Gespeichert in:
Veröffentlicht in: | Theory of computing systems 2024-08, Vol.68 (4), p.773-813 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 813 |
---|---|
container_issue | 4 |
container_start_page | 773 |
container_title | Theory of computing systems |
container_volume | 68 |
creator | Feige, Uriel Grinberg, Vadim |
description | In the well known planted clique problem, a clique (or alternatively, an independent set) of size
k
is planted at random in an Erdos-Renyi random
G
(
n
,
p
) graph, and the goal is to design an algorithm that finds the maximum clique (or independent set) in the resulting graph. We introduce a variation on this problem, where instead of planting the clique at random, the clique is planted by an adversary who attempts to make it difficult to find the maximum clique in the resulting graph. We show that for the standard setting of the parameters of the problem, namely, a clique of size
k
=
n
planted in a random
G
(
n
,
1
2
)
graph, the known polynomial time algorithms can be extended (in a non-trivial way) to work also in the adversarial setting. In contrast, we show that for other natural settings of the parameters, such as planting an independent set of size
k
=
n
2
in a
G
(
n
,
p
) graph with
p
=
n
-
1
2
, there is no polynomial time algorithm that finds an independent set of size
k
, unless NP has randomized polynomial time algorithms. |
doi_str_mv | 10.1007/s00224-024-10167-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3096408928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3096408928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-47cf285fb330a5fcc8861ec8631d089acca0d1a17d8654b3e280b7f172ec5a483</originalsourceid><addsrcrecordid>eNp9j89LwzAUx4MoOKdHL54KnqPv5aVtehIpaoWBFz2HNE2kY64z6XD-92ar4M3D4_sO3x98GLtCuEGA8jYCCCE5pEPAouS7IzZDScRBVnB8-AWXlMMpO4txCQCkAGbsshm-snHImr5zmcnqVf-5dXfn7MSbVXQXvzpnb48Pr3XDFy9Pz_X9gltCOXJZWi9U7lsiMLm3VqkCnVUFYQeqMtYa6NBg2akily05oaAtPZbC2dxIRXN2PfVuwpB246iXwzas06QmqAqZSsTeJSaXDUOMwXm9Cf2HCd8aQe_x9YSvE74-4OtdCtEUism8fnfhr_qf1A-U31p_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096408928</pqid></control><display><type>article</type><title>How to Hide a Clique?</title><source>SpringerLink Journals - AutoHoldings</source><creator>Feige, Uriel ; Grinberg, Vadim</creator><creatorcontrib>Feige, Uriel ; Grinberg, Vadim</creatorcontrib><description>In the well known planted clique problem, a clique (or alternatively, an independent set) of size
k
is planted at random in an Erdos-Renyi random
G
(
n
,
p
) graph, and the goal is to design an algorithm that finds the maximum clique (or independent set) in the resulting graph. We introduce a variation on this problem, where instead of planting the clique at random, the clique is planted by an adversary who attempts to make it difficult to find the maximum clique in the resulting graph. We show that for the standard setting of the parameters of the problem, namely, a clique of size
k
=
n
planted in a random
G
(
n
,
1
2
)
graph, the known polynomial time algorithms can be extended (in a non-trivial way) to work also in the adversarial setting. In contrast, we show that for other natural settings of the parameters, such as planting an independent set of size
k
=
n
2
in a
G
(
n
,
p
) graph with
p
=
n
-
1
2
, there is no polynomial time algorithm that finds an independent set of size
k
, unless NP has randomized polynomial time algorithms.</description><identifier>ISSN: 1432-4350</identifier><identifier>EISSN: 1433-0490</identifier><identifier>DOI: 10.1007/s00224-024-10167-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computer Science ; Graph theory ; Parameters ; Polynomials ; Theory of Computation</subject><ispartof>Theory of computing systems, 2024-08, Vol.68 (4), p.773-813</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-47cf285fb330a5fcc8861ec8631d089acca0d1a17d8654b3e280b7f172ec5a483</cites><orcidid>0009-0006-3749-4392 ; 0000-0003-4781-1911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00224-024-10167-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00224-024-10167-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Feige, Uriel</creatorcontrib><creatorcontrib>Grinberg, Vadim</creatorcontrib><title>How to Hide a Clique?</title><title>Theory of computing systems</title><addtitle>Theory Comput Syst</addtitle><description>In the well known planted clique problem, a clique (or alternatively, an independent set) of size
k
is planted at random in an Erdos-Renyi random
G
(
n
,
p
) graph, and the goal is to design an algorithm that finds the maximum clique (or independent set) in the resulting graph. We introduce a variation on this problem, where instead of planting the clique at random, the clique is planted by an adversary who attempts to make it difficult to find the maximum clique in the resulting graph. We show that for the standard setting of the parameters of the problem, namely, a clique of size
k
=
n
planted in a random
G
(
n
,
1
2
)
graph, the known polynomial time algorithms can be extended (in a non-trivial way) to work also in the adversarial setting. In contrast, we show that for other natural settings of the parameters, such as planting an independent set of size
k
=
n
2
in a
G
(
n
,
p
) graph with
p
=
n
-
1
2
, there is no polynomial time algorithm that finds an independent set of size
k
, unless NP has randomized polynomial time algorithms.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Graph theory</subject><subject>Parameters</subject><subject>Polynomials</subject><subject>Theory of Computation</subject><issn>1432-4350</issn><issn>1433-0490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9j89LwzAUx4MoOKdHL54KnqPv5aVtehIpaoWBFz2HNE2kY64z6XD-92ar4M3D4_sO3x98GLtCuEGA8jYCCCE5pEPAouS7IzZDScRBVnB8-AWXlMMpO4txCQCkAGbsshm-snHImr5zmcnqVf-5dXfn7MSbVXQXvzpnb48Pr3XDFy9Pz_X9gltCOXJZWi9U7lsiMLm3VqkCnVUFYQeqMtYa6NBg2akily05oaAtPZbC2dxIRXN2PfVuwpB246iXwzas06QmqAqZSsTeJSaXDUOMwXm9Cf2HCd8aQe_x9YSvE74-4OtdCtEUism8fnfhr_qf1A-U31p_</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Feige, Uriel</creator><creator>Grinberg, Vadim</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0006-3749-4392</orcidid><orcidid>https://orcid.org/0000-0003-4781-1911</orcidid></search><sort><creationdate>20240801</creationdate><title>How to Hide a Clique?</title><author>Feige, Uriel ; Grinberg, Vadim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-47cf285fb330a5fcc8861ec8631d089acca0d1a17d8654b3e280b7f172ec5a483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Graph theory</topic><topic>Parameters</topic><topic>Polynomials</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feige, Uriel</creatorcontrib><creatorcontrib>Grinberg, Vadim</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theory of computing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feige, Uriel</au><au>Grinberg, Vadim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to Hide a Clique?</atitle><jtitle>Theory of computing systems</jtitle><stitle>Theory Comput Syst</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>68</volume><issue>4</issue><spage>773</spage><epage>813</epage><pages>773-813</pages><issn>1432-4350</issn><eissn>1433-0490</eissn><abstract>In the well known planted clique problem, a clique (or alternatively, an independent set) of size
k
is planted at random in an Erdos-Renyi random
G
(
n
,
p
) graph, and the goal is to design an algorithm that finds the maximum clique (or independent set) in the resulting graph. We introduce a variation on this problem, where instead of planting the clique at random, the clique is planted by an adversary who attempts to make it difficult to find the maximum clique in the resulting graph. We show that for the standard setting of the parameters of the problem, namely, a clique of size
k
=
n
planted in a random
G
(
n
,
1
2
)
graph, the known polynomial time algorithms can be extended (in a non-trivial way) to work also in the adversarial setting. In contrast, we show that for other natural settings of the parameters, such as planting an independent set of size
k
=
n
2
in a
G
(
n
,
p
) graph with
p
=
n
-
1
2
, there is no polynomial time algorithm that finds an independent set of size
k
, unless NP has randomized polynomial time algorithms.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00224-024-10167-x</doi><tpages>41</tpages><orcidid>https://orcid.org/0009-0006-3749-4392</orcidid><orcidid>https://orcid.org/0000-0003-4781-1911</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-4350 |
ispartof | Theory of computing systems, 2024-08, Vol.68 (4), p.773-813 |
issn | 1432-4350 1433-0490 |
language | eng |
recordid | cdi_proquest_journals_3096408928 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Computer Science Graph theory Parameters Polynomials Theory of Computation |
title | How to Hide a Clique? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A42%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20Hide%20a%20Clique?&rft.jtitle=Theory%20of%20computing%20systems&rft.au=Feige,%20Uriel&rft.date=2024-08-01&rft.volume=68&rft.issue=4&rft.spage=773&rft.epage=813&rft.pages=773-813&rft.issn=1432-4350&rft.eissn=1433-0490&rft_id=info:doi/10.1007/s00224-024-10167-x&rft_dat=%3Cproquest_cross%3E3096408928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096408928&rft_id=info:pmid/&rfr_iscdi=true |