How to Hide a Clique?

In the well known planted clique problem, a clique (or alternatively, an independent set) of size k is planted at random in an Erdos-Renyi random G ( n ,  p ) graph, and the goal is to design an algorithm that finds the maximum clique (or independent set) in the resulting graph. We introduce a varia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory of computing systems 2024-08, Vol.68 (4), p.773-813
Hauptverfasser: Feige, Uriel, Grinberg, Vadim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 813
container_issue 4
container_start_page 773
container_title Theory of computing systems
container_volume 68
creator Feige, Uriel
Grinberg, Vadim
description In the well known planted clique problem, a clique (or alternatively, an independent set) of size k is planted at random in an Erdos-Renyi random G ( n ,  p ) graph, and the goal is to design an algorithm that finds the maximum clique (or independent set) in the resulting graph. We introduce a variation on this problem, where instead of planting the clique at random, the clique is planted by an adversary who attempts to make it difficult to find the maximum clique in the resulting graph. We show that for the standard setting of the parameters of the problem, namely, a clique of size k = n planted in a random G ( n , 1 2 ) graph, the known polynomial time algorithms can be extended (in a non-trivial way) to work also in the adversarial setting. In contrast, we show that for other natural settings of the parameters, such as planting an independent set of size k = n 2 in a G ( n ,  p ) graph with p = n - 1 2 , there is no polynomial time algorithm that finds an independent set of size k , unless NP has randomized polynomial time algorithms.
doi_str_mv 10.1007/s00224-024-10167-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3096408928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3096408928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-47cf285fb330a5fcc8861ec8631d089acca0d1a17d8654b3e280b7f172ec5a483</originalsourceid><addsrcrecordid>eNp9j89LwzAUx4MoOKdHL54KnqPv5aVtehIpaoWBFz2HNE2kY64z6XD-92ar4M3D4_sO3x98GLtCuEGA8jYCCCE5pEPAouS7IzZDScRBVnB8-AWXlMMpO4txCQCkAGbsshm-snHImr5zmcnqVf-5dXfn7MSbVXQXvzpnb48Pr3XDFy9Pz_X9gltCOXJZWi9U7lsiMLm3VqkCnVUFYQeqMtYa6NBg2akily05oaAtPZbC2dxIRXN2PfVuwpB246iXwzas06QmqAqZSsTeJSaXDUOMwXm9Cf2HCd8aQe_x9YSvE74-4OtdCtEUism8fnfhr_qf1A-U31p_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096408928</pqid></control><display><type>article</type><title>How to Hide a Clique?</title><source>SpringerLink Journals - AutoHoldings</source><creator>Feige, Uriel ; Grinberg, Vadim</creator><creatorcontrib>Feige, Uriel ; Grinberg, Vadim</creatorcontrib><description>In the well known planted clique problem, a clique (or alternatively, an independent set) of size k is planted at random in an Erdos-Renyi random G ( n ,  p ) graph, and the goal is to design an algorithm that finds the maximum clique (or independent set) in the resulting graph. We introduce a variation on this problem, where instead of planting the clique at random, the clique is planted by an adversary who attempts to make it difficult to find the maximum clique in the resulting graph. We show that for the standard setting of the parameters of the problem, namely, a clique of size k = n planted in a random G ( n , 1 2 ) graph, the known polynomial time algorithms can be extended (in a non-trivial way) to work also in the adversarial setting. In contrast, we show that for other natural settings of the parameters, such as planting an independent set of size k = n 2 in a G ( n ,  p ) graph with p = n - 1 2 , there is no polynomial time algorithm that finds an independent set of size k , unless NP has randomized polynomial time algorithms.</description><identifier>ISSN: 1432-4350</identifier><identifier>EISSN: 1433-0490</identifier><identifier>DOI: 10.1007/s00224-024-10167-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computer Science ; Graph theory ; Parameters ; Polynomials ; Theory of Computation</subject><ispartof>Theory of computing systems, 2024-08, Vol.68 (4), p.773-813</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-47cf285fb330a5fcc8861ec8631d089acca0d1a17d8654b3e280b7f172ec5a483</cites><orcidid>0009-0006-3749-4392 ; 0000-0003-4781-1911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00224-024-10167-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00224-024-10167-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Feige, Uriel</creatorcontrib><creatorcontrib>Grinberg, Vadim</creatorcontrib><title>How to Hide a Clique?</title><title>Theory of computing systems</title><addtitle>Theory Comput Syst</addtitle><description>In the well known planted clique problem, a clique (or alternatively, an independent set) of size k is planted at random in an Erdos-Renyi random G ( n ,  p ) graph, and the goal is to design an algorithm that finds the maximum clique (or independent set) in the resulting graph. We introduce a variation on this problem, where instead of planting the clique at random, the clique is planted by an adversary who attempts to make it difficult to find the maximum clique in the resulting graph. We show that for the standard setting of the parameters of the problem, namely, a clique of size k = n planted in a random G ( n , 1 2 ) graph, the known polynomial time algorithms can be extended (in a non-trivial way) to work also in the adversarial setting. In contrast, we show that for other natural settings of the parameters, such as planting an independent set of size k = n 2 in a G ( n ,  p ) graph with p = n - 1 2 , there is no polynomial time algorithm that finds an independent set of size k , unless NP has randomized polynomial time algorithms.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Graph theory</subject><subject>Parameters</subject><subject>Polynomials</subject><subject>Theory of Computation</subject><issn>1432-4350</issn><issn>1433-0490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9j89LwzAUx4MoOKdHL54KnqPv5aVtehIpaoWBFz2HNE2kY64z6XD-92ar4M3D4_sO3x98GLtCuEGA8jYCCCE5pEPAouS7IzZDScRBVnB8-AWXlMMpO4txCQCkAGbsshm-snHImr5zmcnqVf-5dXfn7MSbVXQXvzpnb48Pr3XDFy9Pz_X9gltCOXJZWi9U7lsiMLm3VqkCnVUFYQeqMtYa6NBg2akily05oaAtPZbC2dxIRXN2PfVuwpB246iXwzas06QmqAqZSsTeJSaXDUOMwXm9Cf2HCd8aQe_x9YSvE74-4OtdCtEUism8fnfhr_qf1A-U31p_</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Feige, Uriel</creator><creator>Grinberg, Vadim</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0006-3749-4392</orcidid><orcidid>https://orcid.org/0000-0003-4781-1911</orcidid></search><sort><creationdate>20240801</creationdate><title>How to Hide a Clique?</title><author>Feige, Uriel ; Grinberg, Vadim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-47cf285fb330a5fcc8861ec8631d089acca0d1a17d8654b3e280b7f172ec5a483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Graph theory</topic><topic>Parameters</topic><topic>Polynomials</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feige, Uriel</creatorcontrib><creatorcontrib>Grinberg, Vadim</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theory of computing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feige, Uriel</au><au>Grinberg, Vadim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to Hide a Clique?</atitle><jtitle>Theory of computing systems</jtitle><stitle>Theory Comput Syst</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>68</volume><issue>4</issue><spage>773</spage><epage>813</epage><pages>773-813</pages><issn>1432-4350</issn><eissn>1433-0490</eissn><abstract>In the well known planted clique problem, a clique (or alternatively, an independent set) of size k is planted at random in an Erdos-Renyi random G ( n ,  p ) graph, and the goal is to design an algorithm that finds the maximum clique (or independent set) in the resulting graph. We introduce a variation on this problem, where instead of planting the clique at random, the clique is planted by an adversary who attempts to make it difficult to find the maximum clique in the resulting graph. We show that for the standard setting of the parameters of the problem, namely, a clique of size k = n planted in a random G ( n , 1 2 ) graph, the known polynomial time algorithms can be extended (in a non-trivial way) to work also in the adversarial setting. In contrast, we show that for other natural settings of the parameters, such as planting an independent set of size k = n 2 in a G ( n ,  p ) graph with p = n - 1 2 , there is no polynomial time algorithm that finds an independent set of size k , unless NP has randomized polynomial time algorithms.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00224-024-10167-x</doi><tpages>41</tpages><orcidid>https://orcid.org/0009-0006-3749-4392</orcidid><orcidid>https://orcid.org/0000-0003-4781-1911</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1432-4350
ispartof Theory of computing systems, 2024-08, Vol.68 (4), p.773-813
issn 1432-4350
1433-0490
language eng
recordid cdi_proquest_journals_3096408928
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Computer Science
Graph theory
Parameters
Polynomials
Theory of Computation
title How to Hide a Clique?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A42%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20Hide%20a%20Clique?&rft.jtitle=Theory%20of%20computing%20systems&rft.au=Feige,%20Uriel&rft.date=2024-08-01&rft.volume=68&rft.issue=4&rft.spage=773&rft.epage=813&rft.pages=773-813&rft.issn=1432-4350&rft.eissn=1433-0490&rft_id=info:doi/10.1007/s00224-024-10167-x&rft_dat=%3Cproquest_cross%3E3096408928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096408928&rft_id=info:pmid/&rfr_iscdi=true