High-Frequency Irreversible Electroporation: Optimum Parameter Prediction via Machine-Learning
The adoption of high-frequency irreversible electroporation in various medical treatments is becoming increasingly prevalent. There is currently a special focus on its applications in oncology, offering new perspectives in terms of treatable tumor types and treatment effectiveness. A multitude of pa...
Gespeichert in:
Veröffentlicht in: | IEEE journal of electromagnetics, RF and microwaves in medicine and biology RF and microwaves in medicine and biology, 2024-09, Vol.8 (3), p.220-228 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 228 |
---|---|
container_issue | 3 |
container_start_page | 220 |
container_title | IEEE journal of electromagnetics, RF and microwaves in medicine and biology |
container_volume | 8 |
creator | De Cillis, A. Merla, C. Monti, G. Tarricone, L. Zappatore, M. |
description | The adoption of high-frequency irreversible electroporation in various medical treatments is becoming increasingly prevalent. There is currently a special focus on its applications in oncology, offering new perspectives in terms of treatable tumor types and treatment effectiveness. A multitude of parameters can influence the efficiency and effectiveness of high-frequency irreversible electroporation procedures, with the selection of suitable electrodes and possible prediction of ablated area as interesting examples. In this paper, we demonstrate that machine-learning strategies, specifically neural networks, provide an appropriate approach for optimizing the choice of some electrode characteristics, and predicting the ablation area, this being quite useful in high-frequency electroporation applications in oncology. This possibility, in turn, may lead to superior results in high-frequency irreversible electroporation, and to a significant reduction of the time required for achieving them. |
doi_str_mv | 10.1109/JERM.2024.3378573 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3096383556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10486922</ieee_id><sourcerecordid>3096383556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-5d78473eb3354c04b81d493f9f8df0b6e9f26564fd61cec059bc3d6022f5f2db3</originalsourceid><addsrcrecordid>eNpNkFtLw0AQhRdRsGh_gOBDwOfUvSfrm5TWVlpaRF9dNpvZdktzcZMW-u9NaBGfZmDOmTnzIfRA8IgQrJ7fJx_LEcWUjxhLUpGwKzSgXKo4oSK5_uu5ukXDptlhjEmSUsX5AH3P_GYbTwP8HKC0p2geAhwhND7bQzTZg21DVVfBtL4qX6JV3friUERrE0wBLYRoHSD3tp9GR2-ipbFbX0K8ABNKX27u0Y0z-waGl3qHvqaTz_EsXqze5uPXRWy7bG0s8iTlCYOMMcEt5llKcq6YUy7NHc4kKEelkNzlkliwWKjMslxiSp1wNM_YHXo6761D1X3StHpXHULZndQMK8lSJoTsVOSssqFqmgBO18EXJpw0wbonqXuSuiepLyQ7z-PZ4wHgn56nUlHKfgFfh3Bi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096383556</pqid></control><display><type>article</type><title>High-Frequency Irreversible Electroporation: Optimum Parameter Prediction via Machine-Learning</title><source>IEEE Electronic Library (IEL)</source><creator>De Cillis, A. ; Merla, C. ; Monti, G. ; Tarricone, L. ; Zappatore, M.</creator><creatorcontrib>De Cillis, A. ; Merla, C. ; Monti, G. ; Tarricone, L. ; Zappatore, M.</creatorcontrib><description>The adoption of high-frequency irreversible electroporation in various medical treatments is becoming increasingly prevalent. There is currently a special focus on its applications in oncology, offering new perspectives in terms of treatable tumor types and treatment effectiveness. A multitude of parameters can influence the efficiency and effectiveness of high-frequency irreversible electroporation procedures, with the selection of suitable electrodes and possible prediction of ablated area as interesting examples. In this paper, we demonstrate that machine-learning strategies, specifically neural networks, provide an appropriate approach for optimizing the choice of some electrode characteristics, and predicting the ablation area, this being quite useful in high-frequency electroporation applications in oncology. This possibility, in turn, may lead to superior results in high-frequency irreversible electroporation, and to a significant reduction of the time required for achieving them.</description><identifier>ISSN: 2469-7249</identifier><identifier>EISSN: 2469-7257</identifier><identifier>DOI: 10.1109/JERM.2024.3378573</identifier><identifier>CODEN: IJERLV</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Ablation ; ablation area ; artificial neural network ; Artificial neural networks ; Effectiveness ; Electrodes ; Electromagnetics ; Electroporation ; High frequency irreversible electroporation ; Machine learning ; Medical treatment ; Neural networks ; Oncology ; Optimization ; Parameter estimation ; Parameters ; Prediction methods ; Predictions ; Protocols ; Reviews ; Tumors</subject><ispartof>IEEE journal of electromagnetics, RF and microwaves in medicine and biology, 2024-09, Vol.8 (3), p.220-228</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-5d78473eb3354c04b81d493f9f8df0b6e9f26564fd61cec059bc3d6022f5f2db3</cites><orcidid>0009-0009-2844-8994 ; 0000-0003-4154-1148 ; 0000-0001-8612-9566 ; 0000-0003-0595-2310 ; 0000-0002-8277-9390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10486922$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10486922$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>De Cillis, A.</creatorcontrib><creatorcontrib>Merla, C.</creatorcontrib><creatorcontrib>Monti, G.</creatorcontrib><creatorcontrib>Tarricone, L.</creatorcontrib><creatorcontrib>Zappatore, M.</creatorcontrib><title>High-Frequency Irreversible Electroporation: Optimum Parameter Prediction via Machine-Learning</title><title>IEEE journal of electromagnetics, RF and microwaves in medicine and biology</title><addtitle>JERM</addtitle><description>The adoption of high-frequency irreversible electroporation in various medical treatments is becoming increasingly prevalent. There is currently a special focus on its applications in oncology, offering new perspectives in terms of treatable tumor types and treatment effectiveness. A multitude of parameters can influence the efficiency and effectiveness of high-frequency irreversible electroporation procedures, with the selection of suitable electrodes and possible prediction of ablated area as interesting examples. In this paper, we demonstrate that machine-learning strategies, specifically neural networks, provide an appropriate approach for optimizing the choice of some electrode characteristics, and predicting the ablation area, this being quite useful in high-frequency electroporation applications in oncology. This possibility, in turn, may lead to superior results in high-frequency irreversible electroporation, and to a significant reduction of the time required for achieving them.</description><subject>Ablation</subject><subject>ablation area</subject><subject>artificial neural network</subject><subject>Artificial neural networks</subject><subject>Effectiveness</subject><subject>Electrodes</subject><subject>Electromagnetics</subject><subject>Electroporation</subject><subject>High frequency irreversible electroporation</subject><subject>Machine learning</subject><subject>Medical treatment</subject><subject>Neural networks</subject><subject>Oncology</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Parameters</subject><subject>Prediction methods</subject><subject>Predictions</subject><subject>Protocols</subject><subject>Reviews</subject><subject>Tumors</subject><issn>2469-7249</issn><issn>2469-7257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFtLw0AQhRdRsGh_gOBDwOfUvSfrm5TWVlpaRF9dNpvZdktzcZMW-u9NaBGfZmDOmTnzIfRA8IgQrJ7fJx_LEcWUjxhLUpGwKzSgXKo4oSK5_uu5ukXDptlhjEmSUsX5AH3P_GYbTwP8HKC0p2geAhwhND7bQzTZg21DVVfBtL4qX6JV3friUERrE0wBLYRoHSD3tp9GR2-ipbFbX0K8ABNKX27u0Y0z-waGl3qHvqaTz_EsXqze5uPXRWy7bG0s8iTlCYOMMcEt5llKcq6YUy7NHc4kKEelkNzlkliwWKjMslxiSp1wNM_YHXo6761D1X3StHpXHULZndQMK8lSJoTsVOSssqFqmgBO18EXJpw0wbonqXuSuiepLyQ7z-PZ4wHgn56nUlHKfgFfh3Bi</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>De Cillis, A.</creator><creator>Merla, C.</creator><creator>Monti, G.</creator><creator>Tarricone, L.</creator><creator>Zappatore, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-2844-8994</orcidid><orcidid>https://orcid.org/0000-0003-4154-1148</orcidid><orcidid>https://orcid.org/0000-0001-8612-9566</orcidid><orcidid>https://orcid.org/0000-0003-0595-2310</orcidid><orcidid>https://orcid.org/0000-0002-8277-9390</orcidid></search><sort><creationdate>20240901</creationdate><title>High-Frequency Irreversible Electroporation: Optimum Parameter Prediction via Machine-Learning</title><author>De Cillis, A. ; Merla, C. ; Monti, G. ; Tarricone, L. ; Zappatore, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-5d78473eb3354c04b81d493f9f8df0b6e9f26564fd61cec059bc3d6022f5f2db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>ablation area</topic><topic>artificial neural network</topic><topic>Artificial neural networks</topic><topic>Effectiveness</topic><topic>Electrodes</topic><topic>Electromagnetics</topic><topic>Electroporation</topic><topic>High frequency irreversible electroporation</topic><topic>Machine learning</topic><topic>Medical treatment</topic><topic>Neural networks</topic><topic>Oncology</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Parameters</topic><topic>Prediction methods</topic><topic>Predictions</topic><topic>Protocols</topic><topic>Reviews</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Cillis, A.</creatorcontrib><creatorcontrib>Merla, C.</creatorcontrib><creatorcontrib>Monti, G.</creatorcontrib><creatorcontrib>Tarricone, L.</creatorcontrib><creatorcontrib>Zappatore, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of electromagnetics, RF and microwaves in medicine and biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>De Cillis, A.</au><au>Merla, C.</au><au>Monti, G.</au><au>Tarricone, L.</au><au>Zappatore, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Frequency Irreversible Electroporation: Optimum Parameter Prediction via Machine-Learning</atitle><jtitle>IEEE journal of electromagnetics, RF and microwaves in medicine and biology</jtitle><stitle>JERM</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>8</volume><issue>3</issue><spage>220</spage><epage>228</epage><pages>220-228</pages><issn>2469-7249</issn><eissn>2469-7257</eissn><coden>IJERLV</coden><abstract>The adoption of high-frequency irreversible electroporation in various medical treatments is becoming increasingly prevalent. There is currently a special focus on its applications in oncology, offering new perspectives in terms of treatable tumor types and treatment effectiveness. A multitude of parameters can influence the efficiency and effectiveness of high-frequency irreversible electroporation procedures, with the selection of suitable electrodes and possible prediction of ablated area as interesting examples. In this paper, we demonstrate that machine-learning strategies, specifically neural networks, provide an appropriate approach for optimizing the choice of some electrode characteristics, and predicting the ablation area, this being quite useful in high-frequency electroporation applications in oncology. This possibility, in turn, may lead to superior results in high-frequency irreversible electroporation, and to a significant reduction of the time required for achieving them.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JERM.2024.3378573</doi><tpages>9</tpages><orcidid>https://orcid.org/0009-0009-2844-8994</orcidid><orcidid>https://orcid.org/0000-0003-4154-1148</orcidid><orcidid>https://orcid.org/0000-0001-8612-9566</orcidid><orcidid>https://orcid.org/0000-0003-0595-2310</orcidid><orcidid>https://orcid.org/0000-0002-8277-9390</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2469-7249 |
ispartof | IEEE journal of electromagnetics, RF and microwaves in medicine and biology, 2024-09, Vol.8 (3), p.220-228 |
issn | 2469-7249 2469-7257 |
language | eng |
recordid | cdi_proquest_journals_3096383556 |
source | IEEE Electronic Library (IEL) |
subjects | Ablation ablation area artificial neural network Artificial neural networks Effectiveness Electrodes Electromagnetics Electroporation High frequency irreversible electroporation Machine learning Medical treatment Neural networks Oncology Optimization Parameter estimation Parameters Prediction methods Predictions Protocols Reviews Tumors |
title | High-Frequency Irreversible Electroporation: Optimum Parameter Prediction via Machine-Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T10%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Frequency%20Irreversible%20Electroporation:%20Optimum%20Parameter%20Prediction%20via%20Machine-Learning&rft.jtitle=IEEE%20journal%20of%20electromagnetics,%20RF%20and%20microwaves%20in%20medicine%20and%20biology&rft.au=De%20Cillis,%20A.&rft.date=2024-09-01&rft.volume=8&rft.issue=3&rft.spage=220&rft.epage=228&rft.pages=220-228&rft.issn=2469-7249&rft.eissn=2469-7257&rft.coden=IJERLV&rft_id=info:doi/10.1109/JERM.2024.3378573&rft_dat=%3Cproquest_RIE%3E3096383556%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096383556&rft_id=info:pmid/&rft_ieee_id=10486922&rfr_iscdi=true |