High-Frequency Irreversible Electroporation: Optimum Parameter Prediction via Machine-Learning

The adoption of high-frequency irreversible electroporation in various medical treatments is becoming increasingly prevalent. There is currently a special focus on its applications in oncology, offering new perspectives in terms of treatable tumor types and treatment effectiveness. A multitude of pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of electromagnetics, RF and microwaves in medicine and biology RF and microwaves in medicine and biology, 2024-09, Vol.8 (3), p.220-228
Hauptverfasser: De Cillis, A., Merla, C., Monti, G., Tarricone, L., Zappatore, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 228
container_issue 3
container_start_page 220
container_title IEEE journal of electromagnetics, RF and microwaves in medicine and biology
container_volume 8
creator De Cillis, A.
Merla, C.
Monti, G.
Tarricone, L.
Zappatore, M.
description The adoption of high-frequency irreversible electroporation in various medical treatments is becoming increasingly prevalent. There is currently a special focus on its applications in oncology, offering new perspectives in terms of treatable tumor types and treatment effectiveness. A multitude of parameters can influence the efficiency and effectiveness of high-frequency irreversible electroporation procedures, with the selection of suitable electrodes and possible prediction of ablated area as interesting examples. In this paper, we demonstrate that machine-learning strategies, specifically neural networks, provide an appropriate approach for optimizing the choice of some electrode characteristics, and predicting the ablation area, this being quite useful in high-frequency electroporation applications in oncology. This possibility, in turn, may lead to superior results in high-frequency irreversible electroporation, and to a significant reduction of the time required for achieving them.
doi_str_mv 10.1109/JERM.2024.3378573
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3096383556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10486922</ieee_id><sourcerecordid>3096383556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-5d78473eb3354c04b81d493f9f8df0b6e9f26564fd61cec059bc3d6022f5f2db3</originalsourceid><addsrcrecordid>eNpNkFtLw0AQhRdRsGh_gOBDwOfUvSfrm5TWVlpaRF9dNpvZdktzcZMW-u9NaBGfZmDOmTnzIfRA8IgQrJ7fJx_LEcWUjxhLUpGwKzSgXKo4oSK5_uu5ukXDptlhjEmSUsX5AH3P_GYbTwP8HKC0p2geAhwhND7bQzTZg21DVVfBtL4qX6JV3friUERrE0wBLYRoHSD3tp9GR2-ipbFbX0K8ABNKX27u0Y0z-waGl3qHvqaTz_EsXqze5uPXRWy7bG0s8iTlCYOMMcEt5llKcq6YUy7NHc4kKEelkNzlkliwWKjMslxiSp1wNM_YHXo6761D1X3StHpXHULZndQMK8lSJoTsVOSssqFqmgBO18EXJpw0wbonqXuSuiepLyQ7z-PZ4wHgn56nUlHKfgFfh3Bi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096383556</pqid></control><display><type>article</type><title>High-Frequency Irreversible Electroporation: Optimum Parameter Prediction via Machine-Learning</title><source>IEEE Electronic Library (IEL)</source><creator>De Cillis, A. ; Merla, C. ; Monti, G. ; Tarricone, L. ; Zappatore, M.</creator><creatorcontrib>De Cillis, A. ; Merla, C. ; Monti, G. ; Tarricone, L. ; Zappatore, M.</creatorcontrib><description>The adoption of high-frequency irreversible electroporation in various medical treatments is becoming increasingly prevalent. There is currently a special focus on its applications in oncology, offering new perspectives in terms of treatable tumor types and treatment effectiveness. A multitude of parameters can influence the efficiency and effectiveness of high-frequency irreversible electroporation procedures, with the selection of suitable electrodes and possible prediction of ablated area as interesting examples. In this paper, we demonstrate that machine-learning strategies, specifically neural networks, provide an appropriate approach for optimizing the choice of some electrode characteristics, and predicting the ablation area, this being quite useful in high-frequency electroporation applications in oncology. This possibility, in turn, may lead to superior results in high-frequency irreversible electroporation, and to a significant reduction of the time required for achieving them.</description><identifier>ISSN: 2469-7249</identifier><identifier>EISSN: 2469-7257</identifier><identifier>DOI: 10.1109/JERM.2024.3378573</identifier><identifier>CODEN: IJERLV</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Ablation ; ablation area ; artificial neural network ; Artificial neural networks ; Effectiveness ; Electrodes ; Electromagnetics ; Electroporation ; High frequency irreversible electroporation ; Machine learning ; Medical treatment ; Neural networks ; Oncology ; Optimization ; Parameter estimation ; Parameters ; Prediction methods ; Predictions ; Protocols ; Reviews ; Tumors</subject><ispartof>IEEE journal of electromagnetics, RF and microwaves in medicine and biology, 2024-09, Vol.8 (3), p.220-228</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-5d78473eb3354c04b81d493f9f8df0b6e9f26564fd61cec059bc3d6022f5f2db3</cites><orcidid>0009-0009-2844-8994 ; 0000-0003-4154-1148 ; 0000-0001-8612-9566 ; 0000-0003-0595-2310 ; 0000-0002-8277-9390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10486922$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10486922$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>De Cillis, A.</creatorcontrib><creatorcontrib>Merla, C.</creatorcontrib><creatorcontrib>Monti, G.</creatorcontrib><creatorcontrib>Tarricone, L.</creatorcontrib><creatorcontrib>Zappatore, M.</creatorcontrib><title>High-Frequency Irreversible Electroporation: Optimum Parameter Prediction via Machine-Learning</title><title>IEEE journal of electromagnetics, RF and microwaves in medicine and biology</title><addtitle>JERM</addtitle><description>The adoption of high-frequency irreversible electroporation in various medical treatments is becoming increasingly prevalent. There is currently a special focus on its applications in oncology, offering new perspectives in terms of treatable tumor types and treatment effectiveness. A multitude of parameters can influence the efficiency and effectiveness of high-frequency irreversible electroporation procedures, with the selection of suitable electrodes and possible prediction of ablated area as interesting examples. In this paper, we demonstrate that machine-learning strategies, specifically neural networks, provide an appropriate approach for optimizing the choice of some electrode characteristics, and predicting the ablation area, this being quite useful in high-frequency electroporation applications in oncology. This possibility, in turn, may lead to superior results in high-frequency irreversible electroporation, and to a significant reduction of the time required for achieving them.</description><subject>Ablation</subject><subject>ablation area</subject><subject>artificial neural network</subject><subject>Artificial neural networks</subject><subject>Effectiveness</subject><subject>Electrodes</subject><subject>Electromagnetics</subject><subject>Electroporation</subject><subject>High frequency irreversible electroporation</subject><subject>Machine learning</subject><subject>Medical treatment</subject><subject>Neural networks</subject><subject>Oncology</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Parameters</subject><subject>Prediction methods</subject><subject>Predictions</subject><subject>Protocols</subject><subject>Reviews</subject><subject>Tumors</subject><issn>2469-7249</issn><issn>2469-7257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFtLw0AQhRdRsGh_gOBDwOfUvSfrm5TWVlpaRF9dNpvZdktzcZMW-u9NaBGfZmDOmTnzIfRA8IgQrJ7fJx_LEcWUjxhLUpGwKzSgXKo4oSK5_uu5ukXDptlhjEmSUsX5AH3P_GYbTwP8HKC0p2geAhwhND7bQzTZg21DVVfBtL4qX6JV3friUERrE0wBLYRoHSD3tp9GR2-ipbFbX0K8ABNKX27u0Y0z-waGl3qHvqaTz_EsXqze5uPXRWy7bG0s8iTlCYOMMcEt5llKcq6YUy7NHc4kKEelkNzlkliwWKjMslxiSp1wNM_YHXo6761D1X3StHpXHULZndQMK8lSJoTsVOSssqFqmgBO18EXJpw0wbonqXuSuiepLyQ7z-PZ4wHgn56nUlHKfgFfh3Bi</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>De Cillis, A.</creator><creator>Merla, C.</creator><creator>Monti, G.</creator><creator>Tarricone, L.</creator><creator>Zappatore, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-2844-8994</orcidid><orcidid>https://orcid.org/0000-0003-4154-1148</orcidid><orcidid>https://orcid.org/0000-0001-8612-9566</orcidid><orcidid>https://orcid.org/0000-0003-0595-2310</orcidid><orcidid>https://orcid.org/0000-0002-8277-9390</orcidid></search><sort><creationdate>20240901</creationdate><title>High-Frequency Irreversible Electroporation: Optimum Parameter Prediction via Machine-Learning</title><author>De Cillis, A. ; Merla, C. ; Monti, G. ; Tarricone, L. ; Zappatore, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-5d78473eb3354c04b81d493f9f8df0b6e9f26564fd61cec059bc3d6022f5f2db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>ablation area</topic><topic>artificial neural network</topic><topic>Artificial neural networks</topic><topic>Effectiveness</topic><topic>Electrodes</topic><topic>Electromagnetics</topic><topic>Electroporation</topic><topic>High frequency irreversible electroporation</topic><topic>Machine learning</topic><topic>Medical treatment</topic><topic>Neural networks</topic><topic>Oncology</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Parameters</topic><topic>Prediction methods</topic><topic>Predictions</topic><topic>Protocols</topic><topic>Reviews</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Cillis, A.</creatorcontrib><creatorcontrib>Merla, C.</creatorcontrib><creatorcontrib>Monti, G.</creatorcontrib><creatorcontrib>Tarricone, L.</creatorcontrib><creatorcontrib>Zappatore, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of electromagnetics, RF and microwaves in medicine and biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>De Cillis, A.</au><au>Merla, C.</au><au>Monti, G.</au><au>Tarricone, L.</au><au>Zappatore, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Frequency Irreversible Electroporation: Optimum Parameter Prediction via Machine-Learning</atitle><jtitle>IEEE journal of electromagnetics, RF and microwaves in medicine and biology</jtitle><stitle>JERM</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>8</volume><issue>3</issue><spage>220</spage><epage>228</epage><pages>220-228</pages><issn>2469-7249</issn><eissn>2469-7257</eissn><coden>IJERLV</coden><abstract>The adoption of high-frequency irreversible electroporation in various medical treatments is becoming increasingly prevalent. There is currently a special focus on its applications in oncology, offering new perspectives in terms of treatable tumor types and treatment effectiveness. A multitude of parameters can influence the efficiency and effectiveness of high-frequency irreversible electroporation procedures, with the selection of suitable electrodes and possible prediction of ablated area as interesting examples. In this paper, we demonstrate that machine-learning strategies, specifically neural networks, provide an appropriate approach for optimizing the choice of some electrode characteristics, and predicting the ablation area, this being quite useful in high-frequency electroporation applications in oncology. This possibility, in turn, may lead to superior results in high-frequency irreversible electroporation, and to a significant reduction of the time required for achieving them.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JERM.2024.3378573</doi><tpages>9</tpages><orcidid>https://orcid.org/0009-0009-2844-8994</orcidid><orcidid>https://orcid.org/0000-0003-4154-1148</orcidid><orcidid>https://orcid.org/0000-0001-8612-9566</orcidid><orcidid>https://orcid.org/0000-0003-0595-2310</orcidid><orcidid>https://orcid.org/0000-0002-8277-9390</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2469-7249
ispartof IEEE journal of electromagnetics, RF and microwaves in medicine and biology, 2024-09, Vol.8 (3), p.220-228
issn 2469-7249
2469-7257
language eng
recordid cdi_proquest_journals_3096383556
source IEEE Electronic Library (IEL)
subjects Ablation
ablation area
artificial neural network
Artificial neural networks
Effectiveness
Electrodes
Electromagnetics
Electroporation
High frequency irreversible electroporation
Machine learning
Medical treatment
Neural networks
Oncology
Optimization
Parameter estimation
Parameters
Prediction methods
Predictions
Protocols
Reviews
Tumors
title High-Frequency Irreversible Electroporation: Optimum Parameter Prediction via Machine-Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T10%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Frequency%20Irreversible%20Electroporation:%20Optimum%20Parameter%20Prediction%20via%20Machine-Learning&rft.jtitle=IEEE%20journal%20of%20electromagnetics,%20RF%20and%20microwaves%20in%20medicine%20and%20biology&rft.au=De%20Cillis,%20A.&rft.date=2024-09-01&rft.volume=8&rft.issue=3&rft.spage=220&rft.epage=228&rft.pages=220-228&rft.issn=2469-7249&rft.eissn=2469-7257&rft.coden=IJERLV&rft_id=info:doi/10.1109/JERM.2024.3378573&rft_dat=%3Cproquest_RIE%3E3096383556%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096383556&rft_id=info:pmid/&rft_ieee_id=10486922&rfr_iscdi=true