Tight-Binding Device Modeling of 2-D Topological Insulator Field-Effect Transistors With Gate-Induced Phase Transition
Topological insulator field-effect transistors (TIFETs) built on 2-D quantum spin Hall (QSH) insulators are considered advanced logic transistors due to their potentially superior performance originating from the dissipationless edge transport. This article presents a device modeling based on the ti...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2024-09, Vol.71 (9), p.5739-5743 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5743 |
---|---|
container_issue | 9 |
container_start_page | 5739 |
container_title | IEEE transactions on electron devices |
container_volume | 71 |
creator | Park, Yungyeong Park, Yosep Choi, Hyeonseok Lim, Subeen Kim, Dongwook Lee, Yeonghun |
description | Topological insulator field-effect transistors (TIFETs) built on 2-D quantum spin Hall (QSH) insulators are considered advanced logic transistors due to their potentially superior performance originating from the dissipationless edge transport. This article presents a device modeling based on the tight-binding (TB) model and the nonequilibrium Green's function (NEGF) formalism to simulate the current-voltage characteristics of the TIFETs. We then use the device simulator to demonstrate the effect of channel length on device performance. The device modeling will not only enable direct estimation of TIFET performance but also shed light on the nontraditional switching operation via the topological phase transition. |
doi_str_mv | 10.1109/TED.2024.3427091 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3096382729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10606287</ieee_id><sourcerecordid>3096382729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-a0189fe6e360356c089c1a96459a02a1c1417ea1936b03fb13acf09921d6bd993</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhS0EEqWwMzBYYnbxI3HiEfqiUhEMQYyR61y3rkJc7KQS_55E7cB0da7OuY8PoXtGJ4xR9VTMZxNOeTIRCc-oYhdoxNI0I0om8hKNKGU5USIX1-gmxn0vZZLwEToWbrtryYtrKtds8QyOzgB-8xXUg_YWczLDhT_42m-d0TVeNbGrdesDXjioKzK3FkyLi6Cb6GLfj_jLtTu81C2QVVN1Bir8sdMRzp7W-eYWXVldR7g71zH6XMyL6StZvy9X0-c1MSxLW6L7q5UFCUJSkUpDc2WY7l9KlaZcM8MSloFmSsgNFXbDhDaWKsVZJTeVUmKMHk9zD8H_dBDbcu-70PQrS0GVFDnP-OCiJ5cJPsYAtjwE963Db8loOdAte7rlQLc80-0jD6eIA4B_dkklzzPxB6b8dXE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096382729</pqid></control><display><type>article</type><title>Tight-Binding Device Modeling of 2-D Topological Insulator Field-Effect Transistors With Gate-Induced Phase Transition</title><source>IEEE Electronic Library (IEL)</source><creator>Park, Yungyeong ; Park, Yosep ; Choi, Hyeonseok ; Lim, Subeen ; Kim, Dongwook ; Lee, Yeonghun</creator><creatorcontrib>Park, Yungyeong ; Park, Yosep ; Choi, Hyeonseok ; Lim, Subeen ; Kim, Dongwook ; Lee, Yeonghun</creatorcontrib><description>Topological insulator field-effect transistors (TIFETs) built on 2-D quantum spin Hall (QSH) insulators are considered advanced logic transistors due to their potentially superior performance originating from the dissipationless edge transport. This article presents a device modeling based on the tight-binding (TB) model and the nonequilibrium Green's function (NEGF) formalism to simulate the current-voltage characteristics of the TIFETs. We then use the device simulator to demonstrate the effect of channel length on device performance. The device modeling will not only enable direct estimation of TIFET performance but also shed light on the nontraditional switching operation via the topological phase transition.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2024.3427091</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Band structures ; Binding ; Current voltage characteristics ; Electric fields ; Field effect transistors ; Field-effect transistors (FETs) ; Green's function methods ; Green's functions ; Logic gates ; Modelling ; nonequilibrium Green’s function (NEGF) formalism ; Performance evaluation ; Phase transitions ; quantum spin Hall (QSH) effect ; Scattering ; Semiconductor devices ; tight binding ; topological insulator ; Topological insulators</subject><ispartof>IEEE transactions on electron devices, 2024-09, Vol.71 (9), p.5739-5743</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-a0189fe6e360356c089c1a96459a02a1c1417ea1936b03fb13acf09921d6bd993</cites><orcidid>0009-0003-0123-8942 ; 0000-0002-6058-1316 ; 0009-0006-1523-5605 ; 0009-0002-1957-2677</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10606287$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10606287$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Park, Yungyeong</creatorcontrib><creatorcontrib>Park, Yosep</creatorcontrib><creatorcontrib>Choi, Hyeonseok</creatorcontrib><creatorcontrib>Lim, Subeen</creatorcontrib><creatorcontrib>Kim, Dongwook</creatorcontrib><creatorcontrib>Lee, Yeonghun</creatorcontrib><title>Tight-Binding Device Modeling of 2-D Topological Insulator Field-Effect Transistors With Gate-Induced Phase Transition</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Topological insulator field-effect transistors (TIFETs) built on 2-D quantum spin Hall (QSH) insulators are considered advanced logic transistors due to their potentially superior performance originating from the dissipationless edge transport. This article presents a device modeling based on the tight-binding (TB) model and the nonequilibrium Green's function (NEGF) formalism to simulate the current-voltage characteristics of the TIFETs. We then use the device simulator to demonstrate the effect of channel length on device performance. The device modeling will not only enable direct estimation of TIFET performance but also shed light on the nontraditional switching operation via the topological phase transition.</description><subject>Band structures</subject><subject>Binding</subject><subject>Current voltage characteristics</subject><subject>Electric fields</subject><subject>Field effect transistors</subject><subject>Field-effect transistors (FETs)</subject><subject>Green's function methods</subject><subject>Green's functions</subject><subject>Logic gates</subject><subject>Modelling</subject><subject>nonequilibrium Green’s function (NEGF) formalism</subject><subject>Performance evaluation</subject><subject>Phase transitions</subject><subject>quantum spin Hall (QSH) effect</subject><subject>Scattering</subject><subject>Semiconductor devices</subject><subject>tight binding</subject><subject>topological insulator</subject><subject>Topological insulators</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDtPwzAUhS0EEqWwMzBYYnbxI3HiEfqiUhEMQYyR61y3rkJc7KQS_55E7cB0da7OuY8PoXtGJ4xR9VTMZxNOeTIRCc-oYhdoxNI0I0om8hKNKGU5USIX1-gmxn0vZZLwEToWbrtryYtrKtds8QyOzgB-8xXUg_YWczLDhT_42m-d0TVeNbGrdesDXjioKzK3FkyLi6Cb6GLfj_jLtTu81C2QVVN1Bir8sdMRzp7W-eYWXVldR7g71zH6XMyL6StZvy9X0-c1MSxLW6L7q5UFCUJSkUpDc2WY7l9KlaZcM8MSloFmSsgNFXbDhDaWKsVZJTeVUmKMHk9zD8H_dBDbcu-70PQrS0GVFDnP-OCiJ5cJPsYAtjwE963Db8loOdAte7rlQLc80-0jD6eIA4B_dkklzzPxB6b8dXE</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Park, Yungyeong</creator><creator>Park, Yosep</creator><creator>Choi, Hyeonseok</creator><creator>Lim, Subeen</creator><creator>Kim, Dongwook</creator><creator>Lee, Yeonghun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0003-0123-8942</orcidid><orcidid>https://orcid.org/0000-0002-6058-1316</orcidid><orcidid>https://orcid.org/0009-0006-1523-5605</orcidid><orcidid>https://orcid.org/0009-0002-1957-2677</orcidid></search><sort><creationdate>20240901</creationdate><title>Tight-Binding Device Modeling of 2-D Topological Insulator Field-Effect Transistors With Gate-Induced Phase Transition</title><author>Park, Yungyeong ; Park, Yosep ; Choi, Hyeonseok ; Lim, Subeen ; Kim, Dongwook ; Lee, Yeonghun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-a0189fe6e360356c089c1a96459a02a1c1417ea1936b03fb13acf09921d6bd993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Band structures</topic><topic>Binding</topic><topic>Current voltage characteristics</topic><topic>Electric fields</topic><topic>Field effect transistors</topic><topic>Field-effect transistors (FETs)</topic><topic>Green's function methods</topic><topic>Green's functions</topic><topic>Logic gates</topic><topic>Modelling</topic><topic>nonequilibrium Green’s function (NEGF) formalism</topic><topic>Performance evaluation</topic><topic>Phase transitions</topic><topic>quantum spin Hall (QSH) effect</topic><topic>Scattering</topic><topic>Semiconductor devices</topic><topic>tight binding</topic><topic>topological insulator</topic><topic>Topological insulators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Yungyeong</creatorcontrib><creatorcontrib>Park, Yosep</creatorcontrib><creatorcontrib>Choi, Hyeonseok</creatorcontrib><creatorcontrib>Lim, Subeen</creatorcontrib><creatorcontrib>Kim, Dongwook</creatorcontrib><creatorcontrib>Lee, Yeonghun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Park, Yungyeong</au><au>Park, Yosep</au><au>Choi, Hyeonseok</au><au>Lim, Subeen</au><au>Kim, Dongwook</au><au>Lee, Yeonghun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tight-Binding Device Modeling of 2-D Topological Insulator Field-Effect Transistors With Gate-Induced Phase Transition</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>71</volume><issue>9</issue><spage>5739</spage><epage>5743</epage><pages>5739-5743</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Topological insulator field-effect transistors (TIFETs) built on 2-D quantum spin Hall (QSH) insulators are considered advanced logic transistors due to their potentially superior performance originating from the dissipationless edge transport. This article presents a device modeling based on the tight-binding (TB) model and the nonequilibrium Green's function (NEGF) formalism to simulate the current-voltage characteristics of the TIFETs. We then use the device simulator to demonstrate the effect of channel length on device performance. The device modeling will not only enable direct estimation of TIFET performance but also shed light on the nontraditional switching operation via the topological phase transition.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2024.3427091</doi><tpages>5</tpages><orcidid>https://orcid.org/0009-0003-0123-8942</orcidid><orcidid>https://orcid.org/0000-0002-6058-1316</orcidid><orcidid>https://orcid.org/0009-0006-1523-5605</orcidid><orcidid>https://orcid.org/0009-0002-1957-2677</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2024-09, Vol.71 (9), p.5739-5743 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_journals_3096382729 |
source | IEEE Electronic Library (IEL) |
subjects | Band structures Binding Current voltage characteristics Electric fields Field effect transistors Field-effect transistors (FETs) Green's function methods Green's functions Logic gates Modelling nonequilibrium Green’s function (NEGF) formalism Performance evaluation Phase transitions quantum spin Hall (QSH) effect Scattering Semiconductor devices tight binding topological insulator Topological insulators |
title | Tight-Binding Device Modeling of 2-D Topological Insulator Field-Effect Transistors With Gate-Induced Phase Transition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A23%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tight-Binding%20Device%20Modeling%20of%202-D%20Topological%20Insulator%20Field-Effect%20Transistors%20With%20Gate-Induced%20Phase%20Transition&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Park,%20Yungyeong&rft.date=2024-09-01&rft.volume=71&rft.issue=9&rft.spage=5739&rft.epage=5743&rft.pages=5739-5743&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2024.3427091&rft_dat=%3Cproquest_RIE%3E3096382729%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096382729&rft_id=info:pmid/&rft_ieee_id=10606287&rfr_iscdi=true |