Efficient Priority Rules for Resource Allocation of Stochastic Decentralized Multi-Project Scheduling Problem

Multiple projects are increasingly managed in a decentralized environment, resulting in an inapplicable centralized resource-constrained multi-project scheduling problem (CRCMPSP). A decentralized resource-constrained multi-project scheduling problem (DRCMPSP) is proposed to ensure the timely delive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.112729-112741
Hauptverfasser: Mao, Hongri, Yuan, Jianbo, Mao, Ying, Zhang, Shixuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112741
container_issue
container_start_page 112729
container_title IEEE access
container_volume 12
creator Mao, Hongri
Yuan, Jianbo
Mao, Ying
Zhang, Shixuan
description Multiple projects are increasingly managed in a decentralized environment, resulting in an inapplicable centralized resource-constrained multi-project scheduling problem (CRCMPSP). A decentralized resource-constrained multi-project scheduling problem (DRCMPSP) is proposed to ensure the timely delivery of products and services within budget. DRCMPSP often faces difficulty in effectively addressing resource conflict. Moreover, activity durations are hard to determine in advance due to various unpredictable events. Therefore, this paper investigates the performance of priority rules (PRs) for global resource allocation of stochastic DRCMPSP. A two-stage heuristic based on PR is then developed to resolve global resource contention under a stochastic environment. 25 PRs from the literature were selected and incorporated into our approach to explore their efficiency on global resource allocation in different global objectives, that is, the expected average project delay (EAPD) and expected total makespan (ETMS). Computational experiments based on the Multi-Project Scheduling Problem LIBrary (MPSPLIB) dataset show that more efficient PRs always favor activities that try to obtain a low delay for each project for EAPD, whereas for ETMS, more efficient PRs tend to favor the longest projects. Furthermore, the hybrid PRs based on more efficient PRs are designed to allocate global resources, and experimental results show that the average percentage of 3 hybrid PRs better than that of their components is 1.14% for EAPD and 0.81% for ETMS, respectively.
doi_str_mv 10.1109/ACCESS.2024.3442993
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3096239099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10634466</ieee_id><doaj_id>oai_doaj_org_article_cf75f78b054649f28c6dd55f615343b5</doaj_id><sourcerecordid>3096239099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-a7e1261c2011433cc197538140cb406010ef5962eb69ad7abe48e85a698c150c3</originalsourceid><addsrcrecordid>eNpNUU1rGzEQFaWBBje_oD0Iel5X37s6GtdtAikNcXoWWu0okZGtVNIe0l8fpRtK5jLDY96bxzyEPlGyppTor5vtdrffrxlhYs2FYFrzd-icUaU7Lrl6_2b-gC5KOZBWQ4Nkf46OO--DC3Cq-CaHlEN9wrdzhIJ9yvgWSpqzA7yJMTlbQzrh5PG-JvdgSw0OfwPXuNnG8Bcm_HOONXQ3OR3AVbx3DzDNMZzum3YaIxw_ojNvY4GL175Cv7_v7raX3fWvH1fbzXXn2KBrZ3ugTFHHCKWCc-eo7iUfqCBuFEQRSsBLrRiMStuptyOIAQZplR4clcTxFbpadKdkD-Yxh6PNTybZYP4BKd8bm5v9CMb5Xvp-GIkUSmjPBqemSUqvqOSCj7JpfVm0HnP6M0Op5tB-cmr2DSfNBNekfXyF-LLlciolg_9_lRLzEpNZYjIvMZnXmBrr88IKAPCGodqCUvwZ8JyOPg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096239099</pqid></control><display><type>article</type><title>Efficient Priority Rules for Resource Allocation of Stochastic Decentralized Multi-Project Scheduling Problem</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mao, Hongri ; Yuan, Jianbo ; Mao, Ying ; Zhang, Shixuan</creator><creatorcontrib>Mao, Hongri ; Yuan, Jianbo ; Mao, Ying ; Zhang, Shixuan</creatorcontrib><description>Multiple projects are increasingly managed in a decentralized environment, resulting in an inapplicable centralized resource-constrained multi-project scheduling problem (CRCMPSP). A decentralized resource-constrained multi-project scheduling problem (DRCMPSP) is proposed to ensure the timely delivery of products and services within budget. DRCMPSP often faces difficulty in effectively addressing resource conflict. Moreover, activity durations are hard to determine in advance due to various unpredictable events. Therefore, this paper investigates the performance of priority rules (PRs) for global resource allocation of stochastic DRCMPSP. A two-stage heuristic based on PR is then developed to resolve global resource contention under a stochastic environment. 25 PRs from the literature were selected and incorporated into our approach to explore their efficiency on global resource allocation in different global objectives, that is, the expected average project delay (EAPD) and expected total makespan (ETMS). Computational experiments based on the Multi-Project Scheduling Problem LIBrary (MPSPLIB) dataset show that more efficient PRs always favor activities that try to obtain a low delay for each project for EAPD, whereas for ETMS, more efficient PRs tend to favor the longest projects. Furthermore, the hybrid PRs based on more efficient PRs are designed to allocate global resources, and experimental results show that the average percentage of 3 hybrid PRs better than that of their components is 1.14% for EAPD and 0.81% for ETMS, respectively.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3442993</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Constraints ; Costs ; Delays ; Delivery scheduling ; global resource allocation ; Iterative methods ; Metaheuristics ; Multi-project scheduling ; priority rule ; Priority scheduling ; Project management ; Resource allocation ; Resource management ; Resource scheduling ; Schedules ; Scheduling ; stochastic duration ; Stochastic processes</subject><ispartof>IEEE access, 2024, Vol.12, p.112729-112741</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-a7e1261c2011433cc197538140cb406010ef5962eb69ad7abe48e85a698c150c3</cites><orcidid>0009-0005-2295-2904 ; 0009-0002-7680-354X ; 0000-0001-8936-2056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10634466$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,862,2098,4012,27620,27910,27911,27912,54920</link.rule.ids></links><search><creatorcontrib>Mao, Hongri</creatorcontrib><creatorcontrib>Yuan, Jianbo</creatorcontrib><creatorcontrib>Mao, Ying</creatorcontrib><creatorcontrib>Zhang, Shixuan</creatorcontrib><title>Efficient Priority Rules for Resource Allocation of Stochastic Decentralized Multi-Project Scheduling Problem</title><title>IEEE access</title><addtitle>Access</addtitle><description>Multiple projects are increasingly managed in a decentralized environment, resulting in an inapplicable centralized resource-constrained multi-project scheduling problem (CRCMPSP). A decentralized resource-constrained multi-project scheduling problem (DRCMPSP) is proposed to ensure the timely delivery of products and services within budget. DRCMPSP often faces difficulty in effectively addressing resource conflict. Moreover, activity durations are hard to determine in advance due to various unpredictable events. Therefore, this paper investigates the performance of priority rules (PRs) for global resource allocation of stochastic DRCMPSP. A two-stage heuristic based on PR is then developed to resolve global resource contention under a stochastic environment. 25 PRs from the literature were selected and incorporated into our approach to explore their efficiency on global resource allocation in different global objectives, that is, the expected average project delay (EAPD) and expected total makespan (ETMS). Computational experiments based on the Multi-Project Scheduling Problem LIBrary (MPSPLIB) dataset show that more efficient PRs always favor activities that try to obtain a low delay for each project for EAPD, whereas for ETMS, more efficient PRs tend to favor the longest projects. Furthermore, the hybrid PRs based on more efficient PRs are designed to allocate global resources, and experimental results show that the average percentage of 3 hybrid PRs better than that of their components is 1.14% for EAPD and 0.81% for ETMS, respectively.</description><subject>Constraints</subject><subject>Costs</subject><subject>Delays</subject><subject>Delivery scheduling</subject><subject>global resource allocation</subject><subject>Iterative methods</subject><subject>Metaheuristics</subject><subject>Multi-project scheduling</subject><subject>priority rule</subject><subject>Priority scheduling</subject><subject>Project management</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Resource scheduling</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>stochastic duration</subject><subject>Stochastic processes</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQFaWBBje_oD0Iel5X37s6GtdtAikNcXoWWu0okZGtVNIe0l8fpRtK5jLDY96bxzyEPlGyppTor5vtdrffrxlhYs2FYFrzd-icUaU7Lrl6_2b-gC5KOZBWQ4Nkf46OO--DC3Cq-CaHlEN9wrdzhIJ9yvgWSpqzA7yJMTlbQzrh5PG-JvdgSw0OfwPXuNnG8Bcm_HOONXQ3OR3AVbx3DzDNMZzum3YaIxw_ojNvY4GL175Cv7_v7raX3fWvH1fbzXXn2KBrZ3ugTFHHCKWCc-eo7iUfqCBuFEQRSsBLrRiMStuptyOIAQZplR4clcTxFbpadKdkD-Yxh6PNTybZYP4BKd8bm5v9CMb5Xvp-GIkUSmjPBqemSUqvqOSCj7JpfVm0HnP6M0Op5tB-cmr2DSfNBNekfXyF-LLlciolg_9_lRLzEpNZYjIvMZnXmBrr88IKAPCGodqCUvwZ8JyOPg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Mao, Hongri</creator><creator>Yuan, Jianbo</creator><creator>Mao, Ying</creator><creator>Zhang, Shixuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0005-2295-2904</orcidid><orcidid>https://orcid.org/0009-0002-7680-354X</orcidid><orcidid>https://orcid.org/0000-0001-8936-2056</orcidid></search><sort><creationdate>2024</creationdate><title>Efficient Priority Rules for Resource Allocation of Stochastic Decentralized Multi-Project Scheduling Problem</title><author>Mao, Hongri ; Yuan, Jianbo ; Mao, Ying ; Zhang, Shixuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-a7e1261c2011433cc197538140cb406010ef5962eb69ad7abe48e85a698c150c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Constraints</topic><topic>Costs</topic><topic>Delays</topic><topic>Delivery scheduling</topic><topic>global resource allocation</topic><topic>Iterative methods</topic><topic>Metaheuristics</topic><topic>Multi-project scheduling</topic><topic>priority rule</topic><topic>Priority scheduling</topic><topic>Project management</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Resource scheduling</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>stochastic duration</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Hongri</creatorcontrib><creatorcontrib>Yuan, Jianbo</creatorcontrib><creatorcontrib>Mao, Ying</creatorcontrib><creatorcontrib>Zhang, Shixuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Hongri</au><au>Yuan, Jianbo</au><au>Mao, Ying</au><au>Zhang, Shixuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Priority Rules for Resource Allocation of Stochastic Decentralized Multi-Project Scheduling Problem</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>112729</spage><epage>112741</epage><pages>112729-112741</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Multiple projects are increasingly managed in a decentralized environment, resulting in an inapplicable centralized resource-constrained multi-project scheduling problem (CRCMPSP). A decentralized resource-constrained multi-project scheduling problem (DRCMPSP) is proposed to ensure the timely delivery of products and services within budget. DRCMPSP often faces difficulty in effectively addressing resource conflict. Moreover, activity durations are hard to determine in advance due to various unpredictable events. Therefore, this paper investigates the performance of priority rules (PRs) for global resource allocation of stochastic DRCMPSP. A two-stage heuristic based on PR is then developed to resolve global resource contention under a stochastic environment. 25 PRs from the literature were selected and incorporated into our approach to explore their efficiency on global resource allocation in different global objectives, that is, the expected average project delay (EAPD) and expected total makespan (ETMS). Computational experiments based on the Multi-Project Scheduling Problem LIBrary (MPSPLIB) dataset show that more efficient PRs always favor activities that try to obtain a low delay for each project for EAPD, whereas for ETMS, more efficient PRs tend to favor the longest projects. Furthermore, the hybrid PRs based on more efficient PRs are designed to allocate global resources, and experimental results show that the average percentage of 3 hybrid PRs better than that of their components is 1.14% for EAPD and 0.81% for ETMS, respectively.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3442993</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0005-2295-2904</orcidid><orcidid>https://orcid.org/0009-0002-7680-354X</orcidid><orcidid>https://orcid.org/0000-0001-8936-2056</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.112729-112741
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_3096239099
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Constraints
Costs
Delays
Delivery scheduling
global resource allocation
Iterative methods
Metaheuristics
Multi-project scheduling
priority rule
Priority scheduling
Project management
Resource allocation
Resource management
Resource scheduling
Schedules
Scheduling
stochastic duration
Stochastic processes
title Efficient Priority Rules for Resource Allocation of Stochastic Decentralized Multi-Project Scheduling Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A27%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Priority%20Rules%20for%20Resource%20Allocation%20of%20Stochastic%20Decentralized%20Multi-Project%20Scheduling%20Problem&rft.jtitle=IEEE%20access&rft.au=Mao,%20Hongri&rft.date=2024&rft.volume=12&rft.spage=112729&rft.epage=112741&rft.pages=112729-112741&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3442993&rft_dat=%3Cproquest_cross%3E3096239099%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096239099&rft_id=info:pmid/&rft_ieee_id=10634466&rft_doaj_id=oai_doaj_org_article_cf75f78b054649f28c6dd55f615343b5&rfr_iscdi=true