Optimizing hyperparameters in Hopfield neural networks using evolutionary search

The major problem facing users of Hopfield neural networks is the automatic choice of hyperparameters depending on the optimisation problem. This work introduces an automatic method to overcome this problem based on an original mathematical model minimizing the energy function. This methods ensures...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Opsearch 2024, Vol.61 (3), p.1245-1273
Hauptverfasser: Rbihou, Safae, Haddouch, Khalid, El moutaouakil, Karim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1273
container_issue 3
container_start_page 1245
container_title Opsearch
container_volume 61
creator Rbihou, Safae
Haddouch, Khalid
El moutaouakil, Karim
description The major problem facing users of Hopfield neural networks is the automatic choice of hyperparameters depending on the optimisation problem. This work introduces an automatic method to overcome this problem based on an original mathematical model minimizing the energy function. This methods ensures the feasibility of optimal solution obtained by decomposing the set of the feasible solutions. We illustrate the proposed model in the context of six well-known NP-hard problems: meeting scheduling problem, Kohonen network problem, portfolio selection problem, traveling salesman problem, task assignment problem, and max-stable problem. To show the effectiveness of our model, we use particle swarm and genetic algorithms to solve several instances of the last three problems. Numerical results show the good performance of the proposed approach compared to random tuning hyperparameters methods. Indeed, our approach permits an improvement of 49.75% for traveling salesman problem, 5.92% for task assignment problem, and 29.41% for max-stable problem.
doi_str_mv 10.1007/s12597-024-00746-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3096167706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3096167706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-20f8023b5215759273f1fcfe58d200fb1db09d1813f9f9e980c3158698b9d5da3</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BTwueo5Nks0mOUtQKhXrQc9iPpE1tN2uyq9Rfb-oKvXl6M8z7GB5C1wRuCYC4i4RyJTDQHKc1L3B-giagBMfAKJymGRhgJqU4RxcxbgCKHGQ-QS_Lrnc79-3aVbbedyZ0ZSh3pjchZq7N5r6zzmybrDVDKLcJ-i8f3mM2xIPCfPrt0DvflmGfRVOGen2Jzmy5jebqD6fo7fHhdTbHi-XT8-x-gWtGRY8pWAmUVZwSLriigllia2u4bCiArUhTgWqIJMwqq4ySUDPCZaFkpRrelGyKbkbfLviPwcReb_wQ2hSpGaiCFEJAkVh0ZNXBxxiM1V1wu_StJqAPzemxOZ2a07_N6TyJslFkat-6eJQoUJLnPFeJwkZKTMd2ZcIx_R_jH4BsfCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096167706</pqid></control><display><type>article</type><title>Optimizing hyperparameters in Hopfield neural networks using evolutionary search</title><source>Springer Nature - Complete Springer Journals</source><creator>Rbihou, Safae ; Haddouch, Khalid ; El moutaouakil, Karim</creator><creatorcontrib>Rbihou, Safae ; Haddouch, Khalid ; El moutaouakil, Karim</creatorcontrib><description>The major problem facing users of Hopfield neural networks is the automatic choice of hyperparameters depending on the optimisation problem. This work introduces an automatic method to overcome this problem based on an original mathematical model minimizing the energy function. This methods ensures the feasibility of optimal solution obtained by decomposing the set of the feasible solutions. We illustrate the proposed model in the context of six well-known NP-hard problems: meeting scheduling problem, Kohonen network problem, portfolio selection problem, traveling salesman problem, task assignment problem, and max-stable problem. To show the effectiveness of our model, we use particle swarm and genetic algorithms to solve several instances of the last three problems. Numerical results show the good performance of the proposed approach compared to random tuning hyperparameters methods. Indeed, our approach permits an improvement of 49.75% for traveling salesman problem, 5.92% for task assignment problem, and 29.41% for max-stable problem.</description><identifier>ISSN: 0030-3887</identifier><identifier>EISSN: 0975-0320</identifier><identifier>DOI: 10.1007/s12597-024-00746-4</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Application Article ; Business and Management ; Feasibility ; Functions (mathematics) ; Genetic algorithms ; Management ; Mathematics ; Neural networks ; Operations Research/Decision Theory ; Optimization ; Task scheduling ; Traveling salesman problem</subject><ispartof>Opsearch, 2024, Vol.61 (3), p.1245-1273</ispartof><rights>The Author(s), under exclusive licence to Operational Research Society of India 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c327t-20f8023b5215759273f1fcfe58d200fb1db09d1813f9f9e980c3158698b9d5da3</cites><orcidid>0000-0002-2152-6410</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12597-024-00746-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12597-024-00746-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Rbihou, Safae</creatorcontrib><creatorcontrib>Haddouch, Khalid</creatorcontrib><creatorcontrib>El moutaouakil, Karim</creatorcontrib><title>Optimizing hyperparameters in Hopfield neural networks using evolutionary search</title><title>Opsearch</title><addtitle>OPSEARCH</addtitle><description>The major problem facing users of Hopfield neural networks is the automatic choice of hyperparameters depending on the optimisation problem. This work introduces an automatic method to overcome this problem based on an original mathematical model minimizing the energy function. This methods ensures the feasibility of optimal solution obtained by decomposing the set of the feasible solutions. We illustrate the proposed model in the context of six well-known NP-hard problems: meeting scheduling problem, Kohonen network problem, portfolio selection problem, traveling salesman problem, task assignment problem, and max-stable problem. To show the effectiveness of our model, we use particle swarm and genetic algorithms to solve several instances of the last three problems. Numerical results show the good performance of the proposed approach compared to random tuning hyperparameters methods. Indeed, our approach permits an improvement of 49.75% for traveling salesman problem, 5.92% for task assignment problem, and 29.41% for max-stable problem.</description><subject>Application Article</subject><subject>Business and Management</subject><subject>Feasibility</subject><subject>Functions (mathematics)</subject><subject>Genetic algorithms</subject><subject>Management</subject><subject>Mathematics</subject><subject>Neural networks</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Task scheduling</subject><subject>Traveling salesman problem</subject><issn>0030-3887</issn><issn>0975-0320</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgrf4BTwueo5Nks0mOUtQKhXrQc9iPpE1tN2uyq9Rfb-oKvXl6M8z7GB5C1wRuCYC4i4RyJTDQHKc1L3B-giagBMfAKJymGRhgJqU4RxcxbgCKHGQ-QS_Lrnc79-3aVbbedyZ0ZSh3pjchZq7N5r6zzmybrDVDKLcJ-i8f3mM2xIPCfPrt0DvflmGfRVOGen2Jzmy5jebqD6fo7fHhdTbHi-XT8-x-gWtGRY8pWAmUVZwSLriigllia2u4bCiArUhTgWqIJMwqq4ySUDPCZaFkpRrelGyKbkbfLviPwcReb_wQ2hSpGaiCFEJAkVh0ZNXBxxiM1V1wu_StJqAPzemxOZ2a07_N6TyJslFkat-6eJQoUJLnPFeJwkZKTMd2ZcIx_R_jH4BsfCQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Rbihou, Safae</creator><creator>Haddouch, Khalid</creator><creator>El moutaouakil, Karim</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-2152-6410</orcidid></search><sort><creationdate>2024</creationdate><title>Optimizing hyperparameters in Hopfield neural networks using evolutionary search</title><author>Rbihou, Safae ; Haddouch, Khalid ; El moutaouakil, Karim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-20f8023b5215759273f1fcfe58d200fb1db09d1813f9f9e980c3158698b9d5da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Application Article</topic><topic>Business and Management</topic><topic>Feasibility</topic><topic>Functions (mathematics)</topic><topic>Genetic algorithms</topic><topic>Management</topic><topic>Mathematics</topic><topic>Neural networks</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Task scheduling</topic><topic>Traveling salesman problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rbihou, Safae</creatorcontrib><creatorcontrib>Haddouch, Khalid</creatorcontrib><creatorcontrib>El moutaouakil, Karim</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Opsearch</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rbihou, Safae</au><au>Haddouch, Khalid</au><au>El moutaouakil, Karim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing hyperparameters in Hopfield neural networks using evolutionary search</atitle><jtitle>Opsearch</jtitle><stitle>OPSEARCH</stitle><date>2024</date><risdate>2024</risdate><volume>61</volume><issue>3</issue><spage>1245</spage><epage>1273</epage><pages>1245-1273</pages><issn>0030-3887</issn><eissn>0975-0320</eissn><abstract>The major problem facing users of Hopfield neural networks is the automatic choice of hyperparameters depending on the optimisation problem. This work introduces an automatic method to overcome this problem based on an original mathematical model minimizing the energy function. This methods ensures the feasibility of optimal solution obtained by decomposing the set of the feasible solutions. We illustrate the proposed model in the context of six well-known NP-hard problems: meeting scheduling problem, Kohonen network problem, portfolio selection problem, traveling salesman problem, task assignment problem, and max-stable problem. To show the effectiveness of our model, we use particle swarm and genetic algorithms to solve several instances of the last three problems. Numerical results show the good performance of the proposed approach compared to random tuning hyperparameters methods. Indeed, our approach permits an improvement of 49.75% for traveling salesman problem, 5.92% for task assignment problem, and 29.41% for max-stable problem.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12597-024-00746-4</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-2152-6410</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0030-3887
ispartof Opsearch, 2024, Vol.61 (3), p.1245-1273
issn 0030-3887
0975-0320
language eng
recordid cdi_proquest_journals_3096167706
source Springer Nature - Complete Springer Journals
subjects Application Article
Business and Management
Feasibility
Functions (mathematics)
Genetic algorithms
Management
Mathematics
Neural networks
Operations Research/Decision Theory
Optimization
Task scheduling
Traveling salesman problem
title Optimizing hyperparameters in Hopfield neural networks using evolutionary search
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20hyperparameters%20in%20Hopfield%20neural%20networks%20using%20evolutionary%20search&rft.jtitle=Opsearch&rft.au=Rbihou,%20Safae&rft.date=2024&rft.volume=61&rft.issue=3&rft.spage=1245&rft.epage=1273&rft.pages=1245-1273&rft.issn=0030-3887&rft.eissn=0975-0320&rft_id=info:doi/10.1007/s12597-024-00746-4&rft_dat=%3Cproquest_cross%3E3096167706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096167706&rft_id=info:pmid/&rfr_iscdi=true