Non-uniform convergence of solution for the Camassa–Holm equation in the zero-filter limit

In this short note, we prove that given initial data u 0 ∈ H s ( R ) with s > 3 2 and for some T > 0 , the solution of the Camassa-Holm equation does not converges uniformly with respect to the initial data in L ∞ ( 0 , T ; H s ( R ) ) to the inviscid Burgers equation as the filter parameter α...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monatshefte für Mathematik 2024, Vol.205 (1), p.177-185
Hauptverfasser: Li, Jinlu, Yu, Yanghai, Zhu, Weipeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 185
container_issue 1
container_start_page 177
container_title Monatshefte für Mathematik
container_volume 205
creator Li, Jinlu
Yu, Yanghai
Zhu, Weipeng
description In this short note, we prove that given initial data u 0 ∈ H s ( R ) with s > 3 2 and for some T > 0 , the solution of the Camassa-Holm equation does not converges uniformly with respect to the initial data in L ∞ ( 0 , T ; H s ( R ) ) to the inviscid Burgers equation as the filter parameter α tends to zero. This is a complement of our recent result on the zero-filter limit.
doi_str_mv 10.1007/s00605-023-01931-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3096165758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3096165758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-11501e38359fce66f749084ec2ba81860c16c8b401bd05990b0be4788b1b184c3</originalsourceid><addsrcrecordid>eNp9kMFKxDAURYMoOI7-gKuA6-h7TZMmSxnUEQbd6E4IbUzHDm0yk7SCrvwH_9Avsc4I7ly9xb3nPjiEnCKcI0BxkQAkCAYZZ4CaI8M9MsGcSyZA4T6ZAGSS6UyIQ3KU0goAkEs9IU93wbPBN3WIHbXBv7q4dN46GmqaQjv0TfB0DGn_4uis7MqUyq-Pz3loO-o2Q7nNG7-N310MrG7a3kXaNl3TH5ODumyTO_m9U_J4ffUwm7PF_c3t7HLBLEfdM0QB6LjiQtfWSVkXuQaVO5tVpUIlwaK0qsoBq2cQWkMFlcsLpSqsUOWWT8nZbncdw2ZwqTerMEQ_vjQctEQpCqHGVrZr2RhSiq4269h0ZXwzCObHotlZNKNFs7VocIT4Dkpj2S9d_Jv-h_oG_ux1fA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096165758</pqid></control><display><type>article</type><title>Non-uniform convergence of solution for the Camassa–Holm equation in the zero-filter limit</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Jinlu ; Yu, Yanghai ; Zhu, Weipeng</creator><creatorcontrib>Li, Jinlu ; Yu, Yanghai ; Zhu, Weipeng</creatorcontrib><description>In this short note, we prove that given initial data u 0 ∈ H s ( R ) with s &gt; 3 2 and for some T &gt; 0 , the solution of the Camassa-Holm equation does not converges uniformly with respect to the initial data in L ∞ ( 0 , T ; H s ( R ) ) to the inviscid Burgers equation as the filter parameter α tends to zero. This is a complement of our recent result on the zero-filter limit.</description><identifier>ISSN: 0026-9255</identifier><identifier>EISSN: 1436-5081</identifier><identifier>DOI: 10.1007/s00605-023-01931-1</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Burgers equation ; Fluid dynamics ; Mathematics ; Mathematics and Statistics ; Partial differential equations</subject><ispartof>Monatshefte für Mathematik, 2024, Vol.205 (1), p.177-185</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-11501e38359fce66f749084ec2ba81860c16c8b401bd05990b0be4788b1b184c3</citedby><cites>FETCH-LOGICAL-c319t-11501e38359fce66f749084ec2ba81860c16c8b401bd05990b0be4788b1b184c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00605-023-01931-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00605-023-01931-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Jinlu</creatorcontrib><creatorcontrib>Yu, Yanghai</creatorcontrib><creatorcontrib>Zhu, Weipeng</creatorcontrib><title>Non-uniform convergence of solution for the Camassa–Holm equation in the zero-filter limit</title><title>Monatshefte für Mathematik</title><addtitle>Monatsh Math</addtitle><description>In this short note, we prove that given initial data u 0 ∈ H s ( R ) with s &gt; 3 2 and for some T &gt; 0 , the solution of the Camassa-Holm equation does not converges uniformly with respect to the initial data in L ∞ ( 0 , T ; H s ( R ) ) to the inviscid Burgers equation as the filter parameter α tends to zero. This is a complement of our recent result on the zero-filter limit.</description><subject>Burgers equation</subject><subject>Fluid dynamics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial differential equations</subject><issn>0026-9255</issn><issn>1436-5081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAURYMoOI7-gKuA6-h7TZMmSxnUEQbd6E4IbUzHDm0yk7SCrvwH_9Avsc4I7ly9xb3nPjiEnCKcI0BxkQAkCAYZZ4CaI8M9MsGcSyZA4T6ZAGSS6UyIQ3KU0goAkEs9IU93wbPBN3WIHbXBv7q4dN46GmqaQjv0TfB0DGn_4uis7MqUyq-Pz3loO-o2Q7nNG7-N310MrG7a3kXaNl3TH5ODumyTO_m9U_J4ffUwm7PF_c3t7HLBLEfdM0QB6LjiQtfWSVkXuQaVO5tVpUIlwaK0qsoBq2cQWkMFlcsLpSqsUOWWT8nZbncdw2ZwqTerMEQ_vjQctEQpCqHGVrZr2RhSiq4269h0ZXwzCObHotlZNKNFs7VocIT4Dkpj2S9d_Jv-h_oG_ux1fA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Li, Jinlu</creator><creator>Yu, Yanghai</creator><creator>Zhu, Weipeng</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Non-uniform convergence of solution for the Camassa–Holm equation in the zero-filter limit</title><author>Li, Jinlu ; Yu, Yanghai ; Zhu, Weipeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-11501e38359fce66f749084ec2ba81860c16c8b401bd05990b0be4788b1b184c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Burgers equation</topic><topic>Fluid dynamics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jinlu</creatorcontrib><creatorcontrib>Yu, Yanghai</creatorcontrib><creatorcontrib>Zhu, Weipeng</creatorcontrib><collection>CrossRef</collection><jtitle>Monatshefte für Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jinlu</au><au>Yu, Yanghai</au><au>Zhu, Weipeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-uniform convergence of solution for the Camassa–Holm equation in the zero-filter limit</atitle><jtitle>Monatshefte für Mathematik</jtitle><stitle>Monatsh Math</stitle><date>2024</date><risdate>2024</risdate><volume>205</volume><issue>1</issue><spage>177</spage><epage>185</epage><pages>177-185</pages><issn>0026-9255</issn><eissn>1436-5081</eissn><abstract>In this short note, we prove that given initial data u 0 ∈ H s ( R ) with s &gt; 3 2 and for some T &gt; 0 , the solution of the Camassa-Holm equation does not converges uniformly with respect to the initial data in L ∞ ( 0 , T ; H s ( R ) ) to the inviscid Burgers equation as the filter parameter α tends to zero. This is a complement of our recent result on the zero-filter limit.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00605-023-01931-1</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0026-9255
ispartof Monatshefte für Mathematik, 2024, Vol.205 (1), p.177-185
issn 0026-9255
1436-5081
language eng
recordid cdi_proquest_journals_3096165758
source SpringerLink Journals - AutoHoldings
subjects Burgers equation
Fluid dynamics
Mathematics
Mathematics and Statistics
Partial differential equations
title Non-uniform convergence of solution for the Camassa–Holm equation in the zero-filter limit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A06%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-uniform%20convergence%20of%20solution%20for%20the%20Camassa%E2%80%93Holm%20equation%20in%20the%20zero-filter%20limit&rft.jtitle=Monatshefte%20f%C3%BCr%20Mathematik&rft.au=Li,%20Jinlu&rft.date=2024&rft.volume=205&rft.issue=1&rft.spage=177&rft.epage=185&rft.pages=177-185&rft.issn=0026-9255&rft.eissn=1436-5081&rft_id=info:doi/10.1007/s00605-023-01931-1&rft_dat=%3Cproquest_cross%3E3096165758%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096165758&rft_id=info:pmid/&rfr_iscdi=true