3-D Structurally Constrained Inversion of the Controlled-Source Electromagnetic Data Using Octree Meshes
In this article, we propose a structural constraint method to improve the resolution of 3-D frequency-domain controlled-source electromagnetic (CSEM) data imaging. The subsurface interfaces can be obtained from high-resolution seismic imaging data or reliable geological information. First, we assume...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-15 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | Liu, Jiren Xiao, Xiao Tang, Jingtian Zhou, Cong Li, Yinhang Zhou, Feihu Pang, Cheng Zhou, Shuguang Wang, Hong |
description | In this article, we propose a structural constraint method to improve the resolution of 3-D frequency-domain controlled-source electromagnetic (CSEM) data imaging. The subsurface interfaces can be obtained from high-resolution seismic imaging data or reliable geological information. First, we assume that electrical parameters within a given formation are classified, meaning that they exhibit variation around their average value. Then, the structural constraint can be guided by the resistivity averages and ranges obtained from petrophysical measurements. In this way, we can achieve categorical inversion results in known regions or even capture structures that are insensitive to data, thereby enhancing the reliability of the interpretation of CSEM data. In addition, we utilize octree-based nonconforming hexahedral meshes to construct the structurally constrained model to simulate undulating terrain and complex underground interfaces more effectively. We adopt the NLCG algorithm for the inversion of CSEM data. Finally, we test the effectiveness of the proposed structural constraint method using synthetic and field datasets. The inversion results show that our method can constrain the known strata in shallower parts well and significantly improve the resolution of the deeper regions. |
doi_str_mv | 10.1109/TGRS.2024.3438441 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3096076768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10623230</ieee_id><sourcerecordid>3096076768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-2b450f2612de5f85f6cda63d8d7171c737112aea03d64a19052bddb43068355c3</originalsourceid><addsrcrecordid>eNpNkE9rwkAQxZfSQq3tByj0sNBz7M7-S3Isaq1gEaqew7o70UhM7O5a8Ns3ooeeBua9N_P4EfIMbADA8rfl5Hsx4IzLgZAikxJuSA-UyhKmpbwlPQa5TniW83vyEMKOMZAK0h7ZimREF9EfbTx6U9cnOmybEL2pGnR02vyiD1Xb0LakcYtnMfq2rtEli_boLdJxjbZb7c2mwVhZOjLR0FWomg2ddwIi_cKwxfBI7kpTB3y6zj5ZfYyXw89kNp9Mh--zxEKqY8LXUrGSa-AOVZmpUltntHCZSyEFm4oUgBs0TDgtDeRM8bVzaymYzoRSVvTJ6-Xuwbc_Rwyx2HVFm-5lIViuWarTztkncHFZ34bgsSwOvtobfyqAFWegxRlocQZaXIF2mZdLpkLEf37NBRdM_AFvp3H8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096076768</pqid></control><display><type>article</type><title>3-D Structurally Constrained Inversion of the Controlled-Source Electromagnetic Data Using Octree Meshes</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Jiren ; Xiao, Xiao ; Tang, Jingtian ; Zhou, Cong ; Li, Yinhang ; Zhou, Feihu ; Pang, Cheng ; Zhou, Shuguang ; Wang, Hong</creator><creatorcontrib>Liu, Jiren ; Xiao, Xiao ; Tang, Jingtian ; Zhou, Cong ; Li, Yinhang ; Zhou, Feihu ; Pang, Cheng ; Zhou, Shuguang ; Wang, Hong</creatorcontrib><description>In this article, we propose a structural constraint method to improve the resolution of 3-D frequency-domain controlled-source electromagnetic (CSEM) data imaging. The subsurface interfaces can be obtained from high-resolution seismic imaging data or reliable geological information. First, we assume that electrical parameters within a given formation are classified, meaning that they exhibit variation around their average value. Then, the structural constraint can be guided by the resistivity averages and ranges obtained from petrophysical measurements. In this way, we can achieve categorical inversion results in known regions or even capture structures that are insensitive to data, thereby enhancing the reliability of the interpretation of CSEM data. In addition, we utilize octree-based nonconforming hexahedral meshes to construct the structurally constrained model to simulate undulating terrain and complex underground interfaces more effectively. We adopt the NLCG algorithm for the inversion of CSEM data. Finally, we test the effectiveness of the proposed structural constraint method using synthetic and field datasets. The inversion results show that our method can constrain the known strata in shallower parts well and significantly improve the resolution of the deeper regions.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3438441</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-D inversion ; Algorithms ; Constraints ; controlled-source electromagnetic (CSEM) method ; Data imaging ; Data models ; Geology ; Image resolution ; Interfaces ; Mathematical models ; octree meshes ; Octrees ; rational Krylov subspace ; Reliability ; Rocks ; structural constraint ; Structural reliability ; Underground construction ; Underground structures ; Vectors</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-2b450f2612de5f85f6cda63d8d7171c737112aea03d64a19052bddb43068355c3</cites><orcidid>0000-0002-6347-8197 ; 0000-0002-4379-0298</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10623230$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10623230$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Jiren</creatorcontrib><creatorcontrib>Xiao, Xiao</creatorcontrib><creatorcontrib>Tang, Jingtian</creatorcontrib><creatorcontrib>Zhou, Cong</creatorcontrib><creatorcontrib>Li, Yinhang</creatorcontrib><creatorcontrib>Zhou, Feihu</creatorcontrib><creatorcontrib>Pang, Cheng</creatorcontrib><creatorcontrib>Zhou, Shuguang</creatorcontrib><creatorcontrib>Wang, Hong</creatorcontrib><title>3-D Structurally Constrained Inversion of the Controlled-Source Electromagnetic Data Using Octree Meshes</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In this article, we propose a structural constraint method to improve the resolution of 3-D frequency-domain controlled-source electromagnetic (CSEM) data imaging. The subsurface interfaces can be obtained from high-resolution seismic imaging data or reliable geological information. First, we assume that electrical parameters within a given formation are classified, meaning that they exhibit variation around their average value. Then, the structural constraint can be guided by the resistivity averages and ranges obtained from petrophysical measurements. In this way, we can achieve categorical inversion results in known regions or even capture structures that are insensitive to data, thereby enhancing the reliability of the interpretation of CSEM data. In addition, we utilize octree-based nonconforming hexahedral meshes to construct the structurally constrained model to simulate undulating terrain and complex underground interfaces more effectively. We adopt the NLCG algorithm for the inversion of CSEM data. Finally, we test the effectiveness of the proposed structural constraint method using synthetic and field datasets. The inversion results show that our method can constrain the known strata in shallower parts well and significantly improve the resolution of the deeper regions.</description><subject>3-D inversion</subject><subject>Algorithms</subject><subject>Constraints</subject><subject>controlled-source electromagnetic (CSEM) method</subject><subject>Data imaging</subject><subject>Data models</subject><subject>Geology</subject><subject>Image resolution</subject><subject>Interfaces</subject><subject>Mathematical models</subject><subject>octree meshes</subject><subject>Octrees</subject><subject>rational Krylov subspace</subject><subject>Reliability</subject><subject>Rocks</subject><subject>structural constraint</subject><subject>Structural reliability</subject><subject>Underground construction</subject><subject>Underground structures</subject><subject>Vectors</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9rwkAQxZfSQq3tByj0sNBz7M7-S3Isaq1gEaqew7o70UhM7O5a8Ns3ooeeBua9N_P4EfIMbADA8rfl5Hsx4IzLgZAikxJuSA-UyhKmpbwlPQa5TniW83vyEMKOMZAK0h7ZimREF9EfbTx6U9cnOmybEL2pGnR02vyiD1Xb0LakcYtnMfq2rtEli_boLdJxjbZb7c2mwVhZOjLR0FWomg2ddwIi_cKwxfBI7kpTB3y6zj5ZfYyXw89kNp9Mh--zxEKqY8LXUrGSa-AOVZmpUltntHCZSyEFm4oUgBs0TDgtDeRM8bVzaymYzoRSVvTJ6-Xuwbc_Rwyx2HVFm-5lIViuWarTztkncHFZ34bgsSwOvtobfyqAFWegxRlocQZaXIF2mZdLpkLEf37NBRdM_AFvp3H8</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Liu, Jiren</creator><creator>Xiao, Xiao</creator><creator>Tang, Jingtian</creator><creator>Zhou, Cong</creator><creator>Li, Yinhang</creator><creator>Zhou, Feihu</creator><creator>Pang, Cheng</creator><creator>Zhou, Shuguang</creator><creator>Wang, Hong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6347-8197</orcidid><orcidid>https://orcid.org/0000-0002-4379-0298</orcidid></search><sort><creationdate>2024</creationdate><title>3-D Structurally Constrained Inversion of the Controlled-Source Electromagnetic Data Using Octree Meshes</title><author>Liu, Jiren ; Xiao, Xiao ; Tang, Jingtian ; Zhou, Cong ; Li, Yinhang ; Zhou, Feihu ; Pang, Cheng ; Zhou, Shuguang ; Wang, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-2b450f2612de5f85f6cda63d8d7171c737112aea03d64a19052bddb43068355c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D inversion</topic><topic>Algorithms</topic><topic>Constraints</topic><topic>controlled-source electromagnetic (CSEM) method</topic><topic>Data imaging</topic><topic>Data models</topic><topic>Geology</topic><topic>Image resolution</topic><topic>Interfaces</topic><topic>Mathematical models</topic><topic>octree meshes</topic><topic>Octrees</topic><topic>rational Krylov subspace</topic><topic>Reliability</topic><topic>Rocks</topic><topic>structural constraint</topic><topic>Structural reliability</topic><topic>Underground construction</topic><topic>Underground structures</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jiren</creatorcontrib><creatorcontrib>Xiao, Xiao</creatorcontrib><creatorcontrib>Tang, Jingtian</creatorcontrib><creatorcontrib>Zhou, Cong</creatorcontrib><creatorcontrib>Li, Yinhang</creatorcontrib><creatorcontrib>Zhou, Feihu</creatorcontrib><creatorcontrib>Pang, Cheng</creatorcontrib><creatorcontrib>Zhou, Shuguang</creatorcontrib><creatorcontrib>Wang, Hong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Jiren</au><au>Xiao, Xiao</au><au>Tang, Jingtian</au><au>Zhou, Cong</au><au>Li, Yinhang</au><au>Zhou, Feihu</au><au>Pang, Cheng</au><au>Zhou, Shuguang</au><au>Wang, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3-D Structurally Constrained Inversion of the Controlled-Source Electromagnetic Data Using Octree Meshes</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In this article, we propose a structural constraint method to improve the resolution of 3-D frequency-domain controlled-source electromagnetic (CSEM) data imaging. The subsurface interfaces can be obtained from high-resolution seismic imaging data or reliable geological information. First, we assume that electrical parameters within a given formation are classified, meaning that they exhibit variation around their average value. Then, the structural constraint can be guided by the resistivity averages and ranges obtained from petrophysical measurements. In this way, we can achieve categorical inversion results in known regions or even capture structures that are insensitive to data, thereby enhancing the reliability of the interpretation of CSEM data. In addition, we utilize octree-based nonconforming hexahedral meshes to construct the structurally constrained model to simulate undulating terrain and complex underground interfaces more effectively. We adopt the NLCG algorithm for the inversion of CSEM data. Finally, we test the effectiveness of the proposed structural constraint method using synthetic and field datasets. The inversion results show that our method can constrain the known strata in shallower parts well and significantly improve the resolution of the deeper regions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3438441</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6347-8197</orcidid><orcidid>https://orcid.org/0000-0002-4379-0298</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-15 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_3096076768 |
source | IEEE Electronic Library (IEL) |
subjects | 3-D inversion Algorithms Constraints controlled-source electromagnetic (CSEM) method Data imaging Data models Geology Image resolution Interfaces Mathematical models octree meshes Octrees rational Krylov subspace Reliability Rocks structural constraint Structural reliability Underground construction Underground structures Vectors |
title | 3-D Structurally Constrained Inversion of the Controlled-Source Electromagnetic Data Using Octree Meshes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A28%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3-D%20Structurally%20Constrained%20Inversion%20of%20the%20Controlled-Source%20Electromagnetic%20Data%20Using%20Octree%20Meshes&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Liu,%20Jiren&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3438441&rft_dat=%3Cproquest_RIE%3E3096076768%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096076768&rft_id=info:pmid/&rft_ieee_id=10623230&rfr_iscdi=true |