An efficient convolutional global gated recurrent-based adaptive gazelle algorithm for enhanced disease detection and classification
In modern healthcare, medical image processing plays a vital role in enabling early disease detection, treatment planning, and improved patient care. However, traditional methods face challenges such as handling big data, scalability, and computational intensity. To address these issues, this paper...
Gespeichert in:
Veröffentlicht in: | Evolving systems 2024-10, Vol.15 (5), p.1881-1893 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1893 |
---|---|
container_issue | 5 |
container_start_page | 1881 |
container_title | Evolving systems |
container_volume | 15 |
creator | Maniraj, Subramanian Pitchiah Chillakuru, Prameeladevi Thangavel, Kavitha Kadam, Archana Meckanzi, Sangeetha Cheerla, Sreevardhan |
description | In modern healthcare, medical image processing plays a vital role in enabling early disease detection, treatment planning, and improved patient care. However, traditional methods face challenges such as handling big data, scalability, and computational intensity. To address these issues, this paper proposes a Convolutional Global Gated Recurrent-based Adaptive Gazelle (CGGR-AG) algorithm for medical image processing applications. The CGGR-AG algorithm detects abnormalities and classifies specific objects within images by leveraging Convolutional Neural Networks (CNNs) for feature extraction and Gated Recurrent Units (GRUs) for capturing sequential patterns. Additionally, the Adaptive Gazelle Optimization algorithm fine-tunes parameters to enhance the effectiveness of the CGGR-AG method. Experimental validation is conducted on Tuberculosis and heart disease datasets, evaluating performance metrics including recall, specificity, accuracy, Area Under the Curve – Receiver Operating Characteristic (AUC-ROC), precision, and F1-score. Comparative analysis with state-of-the-art methods demonstrates the effectiveness of the CGGR-AG method in medical image processing applications. |
doi_str_mv | 10.1007/s12530-024-09598-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3095839243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095839243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-8f68259d0b37f41cd0a198aa73cc2b15faa38cdc4a17a579e49809e1c59d6153</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEhX0B1hZYh0Yx3k4y6riJVVi0701ccatqzQudlIJ1nw4LkGwYzV-3HMtnyS54XDHAar7wLNCQApZnkJd1DLlZ8mMy1KmZS7L8991JS-TeQg7AMh4DpBXs-Rz0TMyxmpL_cC064-uGwfreuzYpnPNaeBALfOkR-9jKG0wxD22eBjskeL1B3UdMew2ztthu2fGeUb9Fnsdc60NFAHW0kD6VMywb5nuMAQbn8XT0XVyYbALNP-ZV8n68WG9fE5Xr08vy8Uq1RnAkEpTyqyoW2hEZXKuW0BeS8RKaJ01vDCIQupW58grLKqa8lpCTVxHpuSFuEpup9qDd28jhUHt3OjjT4MSUZwUdZaLmMqmlPYuBE9GHbzdo39XHNTJt5p8q-hbfftWPEJigkIM9xvyf9X_UF-My4Xi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095839243</pqid></control><display><type>article</type><title>An efficient convolutional global gated recurrent-based adaptive gazelle algorithm for enhanced disease detection and classification</title><source>SpringerNature Journals</source><creator>Maniraj, Subramanian Pitchiah ; Chillakuru, Prameeladevi ; Thangavel, Kavitha ; Kadam, Archana ; Meckanzi, Sangeetha ; Cheerla, Sreevardhan</creator><creatorcontrib>Maniraj, Subramanian Pitchiah ; Chillakuru, Prameeladevi ; Thangavel, Kavitha ; Kadam, Archana ; Meckanzi, Sangeetha ; Cheerla, Sreevardhan</creatorcontrib><description>In modern healthcare, medical image processing plays a vital role in enabling early disease detection, treatment planning, and improved patient care. However, traditional methods face challenges such as handling big data, scalability, and computational intensity. To address these issues, this paper proposes a Convolutional Global Gated Recurrent-based Adaptive Gazelle (CGGR-AG) algorithm for medical image processing applications. The CGGR-AG algorithm detects abnormalities and classifies specific objects within images by leveraging Convolutional Neural Networks (CNNs) for feature extraction and Gated Recurrent Units (GRUs) for capturing sequential patterns. Additionally, the Adaptive Gazelle Optimization algorithm fine-tunes parameters to enhance the effectiveness of the CGGR-AG method. Experimental validation is conducted on Tuberculosis and heart disease datasets, evaluating performance metrics including recall, specificity, accuracy, Area Under the Curve – Receiver Operating Characteristic (AUC-ROC), precision, and F1-score. Comparative analysis with state-of-the-art methods demonstrates the effectiveness of the CGGR-AG method in medical image processing applications.</description><identifier>ISSN: 1868-6478</identifier><identifier>EISSN: 1868-6486</identifier><identifier>DOI: 10.1007/s12530-024-09598-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Abnormalities ; Adaptation ; Adaptive algorithms ; Artificial Intelligence ; Artificial neural networks ; Complex Systems ; Complexity ; Datasets ; Deep learning ; Effectiveness ; Efficiency ; Engineering ; Heart diseases ; Image enhancement ; Image processing ; Malaria ; Medical imaging ; Medical personnel ; Methods ; Object recognition ; Optimization algorithms ; Original Paper ; Performance measurement</subject><ispartof>Evolving systems, 2024-10, Vol.15 (5), p.1881-1893</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-8f68259d0b37f41cd0a198aa73cc2b15faa38cdc4a17a579e49809e1c59d6153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12530-024-09598-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12530-024-09598-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Maniraj, Subramanian Pitchiah</creatorcontrib><creatorcontrib>Chillakuru, Prameeladevi</creatorcontrib><creatorcontrib>Thangavel, Kavitha</creatorcontrib><creatorcontrib>Kadam, Archana</creatorcontrib><creatorcontrib>Meckanzi, Sangeetha</creatorcontrib><creatorcontrib>Cheerla, Sreevardhan</creatorcontrib><title>An efficient convolutional global gated recurrent-based adaptive gazelle algorithm for enhanced disease detection and classification</title><title>Evolving systems</title><addtitle>Evolving Systems</addtitle><description>In modern healthcare, medical image processing plays a vital role in enabling early disease detection, treatment planning, and improved patient care. However, traditional methods face challenges such as handling big data, scalability, and computational intensity. To address these issues, this paper proposes a Convolutional Global Gated Recurrent-based Adaptive Gazelle (CGGR-AG) algorithm for medical image processing applications. The CGGR-AG algorithm detects abnormalities and classifies specific objects within images by leveraging Convolutional Neural Networks (CNNs) for feature extraction and Gated Recurrent Units (GRUs) for capturing sequential patterns. Additionally, the Adaptive Gazelle Optimization algorithm fine-tunes parameters to enhance the effectiveness of the CGGR-AG method. Experimental validation is conducted on Tuberculosis and heart disease datasets, evaluating performance metrics including recall, specificity, accuracy, Area Under the Curve – Receiver Operating Characteristic (AUC-ROC), precision, and F1-score. Comparative analysis with state-of-the-art methods demonstrates the effectiveness of the CGGR-AG method in medical image processing applications.</description><subject>Abnormalities</subject><subject>Adaptation</subject><subject>Adaptive algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Complex Systems</subject><subject>Complexity</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Effectiveness</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Heart diseases</subject><subject>Image enhancement</subject><subject>Image processing</subject><subject>Malaria</subject><subject>Medical imaging</subject><subject>Medical personnel</subject><subject>Methods</subject><subject>Object recognition</subject><subject>Optimization algorithms</subject><subject>Original Paper</subject><subject>Performance measurement</subject><issn>1868-6478</issn><issn>1868-6486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEEhX0B1hZYh0Yx3k4y6riJVVi0701ccatqzQudlIJ1nw4LkGwYzV-3HMtnyS54XDHAar7wLNCQApZnkJd1DLlZ8mMy1KmZS7L8991JS-TeQg7AMh4DpBXs-Rz0TMyxmpL_cC064-uGwfreuzYpnPNaeBALfOkR-9jKG0wxD22eBjskeL1B3UdMew2ztthu2fGeUb9Fnsdc60NFAHW0kD6VMywb5nuMAQbn8XT0XVyYbALNP-ZV8n68WG9fE5Xr08vy8Uq1RnAkEpTyqyoW2hEZXKuW0BeS8RKaJ01vDCIQupW58grLKqa8lpCTVxHpuSFuEpup9qDd28jhUHt3OjjT4MSUZwUdZaLmMqmlPYuBE9GHbzdo39XHNTJt5p8q-hbfftWPEJigkIM9xvyf9X_UF-My4Xi</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Maniraj, Subramanian Pitchiah</creator><creator>Chillakuru, Prameeladevi</creator><creator>Thangavel, Kavitha</creator><creator>Kadam, Archana</creator><creator>Meckanzi, Sangeetha</creator><creator>Cheerla, Sreevardhan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20241001</creationdate><title>An efficient convolutional global gated recurrent-based adaptive gazelle algorithm for enhanced disease detection and classification</title><author>Maniraj, Subramanian Pitchiah ; Chillakuru, Prameeladevi ; Thangavel, Kavitha ; Kadam, Archana ; Meckanzi, Sangeetha ; Cheerla, Sreevardhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-8f68259d0b37f41cd0a198aa73cc2b15faa38cdc4a17a579e49809e1c59d6153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abnormalities</topic><topic>Adaptation</topic><topic>Adaptive algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Complex Systems</topic><topic>Complexity</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Effectiveness</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Heart diseases</topic><topic>Image enhancement</topic><topic>Image processing</topic><topic>Malaria</topic><topic>Medical imaging</topic><topic>Medical personnel</topic><topic>Methods</topic><topic>Object recognition</topic><topic>Optimization algorithms</topic><topic>Original Paper</topic><topic>Performance measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maniraj, Subramanian Pitchiah</creatorcontrib><creatorcontrib>Chillakuru, Prameeladevi</creatorcontrib><creatorcontrib>Thangavel, Kavitha</creatorcontrib><creatorcontrib>Kadam, Archana</creatorcontrib><creatorcontrib>Meckanzi, Sangeetha</creatorcontrib><creatorcontrib>Cheerla, Sreevardhan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Evolving systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maniraj, Subramanian Pitchiah</au><au>Chillakuru, Prameeladevi</au><au>Thangavel, Kavitha</au><au>Kadam, Archana</au><au>Meckanzi, Sangeetha</au><au>Cheerla, Sreevardhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient convolutional global gated recurrent-based adaptive gazelle algorithm for enhanced disease detection and classification</atitle><jtitle>Evolving systems</jtitle><stitle>Evolving Systems</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>15</volume><issue>5</issue><spage>1881</spage><epage>1893</epage><pages>1881-1893</pages><issn>1868-6478</issn><eissn>1868-6486</eissn><abstract>In modern healthcare, medical image processing plays a vital role in enabling early disease detection, treatment planning, and improved patient care. However, traditional methods face challenges such as handling big data, scalability, and computational intensity. To address these issues, this paper proposes a Convolutional Global Gated Recurrent-based Adaptive Gazelle (CGGR-AG) algorithm for medical image processing applications. The CGGR-AG algorithm detects abnormalities and classifies specific objects within images by leveraging Convolutional Neural Networks (CNNs) for feature extraction and Gated Recurrent Units (GRUs) for capturing sequential patterns. Additionally, the Adaptive Gazelle Optimization algorithm fine-tunes parameters to enhance the effectiveness of the CGGR-AG method. Experimental validation is conducted on Tuberculosis and heart disease datasets, evaluating performance metrics including recall, specificity, accuracy, Area Under the Curve – Receiver Operating Characteristic (AUC-ROC), precision, and F1-score. Comparative analysis with state-of-the-art methods demonstrates the effectiveness of the CGGR-AG method in medical image processing applications.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12530-024-09598-1</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-6478 |
ispartof | Evolving systems, 2024-10, Vol.15 (5), p.1881-1893 |
issn | 1868-6478 1868-6486 |
language | eng |
recordid | cdi_proquest_journals_3095839243 |
source | SpringerNature Journals |
subjects | Abnormalities Adaptation Adaptive algorithms Artificial Intelligence Artificial neural networks Complex Systems Complexity Datasets Deep learning Effectiveness Efficiency Engineering Heart diseases Image enhancement Image processing Malaria Medical imaging Medical personnel Methods Object recognition Optimization algorithms Original Paper Performance measurement |
title | An efficient convolutional global gated recurrent-based adaptive gazelle algorithm for enhanced disease detection and classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A26%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20convolutional%20global%20gated%20recurrent-based%20adaptive%20gazelle%20algorithm%20for%20enhanced%20disease%20detection%20and%20classification&rft.jtitle=Evolving%20systems&rft.au=Maniraj,%20Subramanian%20Pitchiah&rft.date=2024-10-01&rft.volume=15&rft.issue=5&rft.spage=1881&rft.epage=1893&rft.pages=1881-1893&rft.issn=1868-6478&rft.eissn=1868-6486&rft_id=info:doi/10.1007/s12530-024-09598-1&rft_dat=%3Cproquest_cross%3E3095839243%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095839243&rft_id=info:pmid/&rfr_iscdi=true |