An efficient convolutional global gated recurrent-based adaptive gazelle algorithm for enhanced disease detection and classification

In modern healthcare, medical image processing plays a vital role in enabling early disease detection, treatment planning, and improved patient care. However, traditional methods face challenges such as handling big data, scalability, and computational intensity. To address these issues, this paper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolving systems 2024-10, Vol.15 (5), p.1881-1893
Hauptverfasser: Maniraj, Subramanian Pitchiah, Chillakuru, Prameeladevi, Thangavel, Kavitha, Kadam, Archana, Meckanzi, Sangeetha, Cheerla, Sreevardhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1893
container_issue 5
container_start_page 1881
container_title Evolving systems
container_volume 15
creator Maniraj, Subramanian Pitchiah
Chillakuru, Prameeladevi
Thangavel, Kavitha
Kadam, Archana
Meckanzi, Sangeetha
Cheerla, Sreevardhan
description In modern healthcare, medical image processing plays a vital role in enabling early disease detection, treatment planning, and improved patient care. However, traditional methods face challenges such as handling big data, scalability, and computational intensity. To address these issues, this paper proposes a Convolutional Global Gated Recurrent-based Adaptive Gazelle (CGGR-AG) algorithm for medical image processing applications. The CGGR-AG algorithm detects abnormalities and classifies specific objects within images by leveraging Convolutional Neural Networks (CNNs) for feature extraction and Gated Recurrent Units (GRUs) for capturing sequential patterns. Additionally, the Adaptive Gazelle Optimization algorithm fine-tunes parameters to enhance the effectiveness of the CGGR-AG method. Experimental validation is conducted on Tuberculosis and heart disease datasets, evaluating performance metrics including recall, specificity, accuracy, Area Under the Curve – Receiver Operating Characteristic (AUC-ROC), precision, and F1-score. Comparative analysis with state-of-the-art methods demonstrates the effectiveness of the CGGR-AG method in medical image processing applications.
doi_str_mv 10.1007/s12530-024-09598-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3095839243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095839243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-8f68259d0b37f41cd0a198aa73cc2b15faa38cdc4a17a579e49809e1c59d6153</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEhX0B1hZYh0Yx3k4y6riJVVi0701ccatqzQudlIJ1nw4LkGwYzV-3HMtnyS54XDHAar7wLNCQApZnkJd1DLlZ8mMy1KmZS7L8991JS-TeQg7AMh4DpBXs-Rz0TMyxmpL_cC064-uGwfreuzYpnPNaeBALfOkR-9jKG0wxD22eBjskeL1B3UdMew2ztthu2fGeUb9Fnsdc60NFAHW0kD6VMywb5nuMAQbn8XT0XVyYbALNP-ZV8n68WG9fE5Xr08vy8Uq1RnAkEpTyqyoW2hEZXKuW0BeS8RKaJ01vDCIQupW58grLKqa8lpCTVxHpuSFuEpup9qDd28jhUHt3OjjT4MSUZwUdZaLmMqmlPYuBE9GHbzdo39XHNTJt5p8q-hbfftWPEJigkIM9xvyf9X_UF-My4Xi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095839243</pqid></control><display><type>article</type><title>An efficient convolutional global gated recurrent-based adaptive gazelle algorithm for enhanced disease detection and classification</title><source>SpringerNature Journals</source><creator>Maniraj, Subramanian Pitchiah ; Chillakuru, Prameeladevi ; Thangavel, Kavitha ; Kadam, Archana ; Meckanzi, Sangeetha ; Cheerla, Sreevardhan</creator><creatorcontrib>Maniraj, Subramanian Pitchiah ; Chillakuru, Prameeladevi ; Thangavel, Kavitha ; Kadam, Archana ; Meckanzi, Sangeetha ; Cheerla, Sreevardhan</creatorcontrib><description>In modern healthcare, medical image processing plays a vital role in enabling early disease detection, treatment planning, and improved patient care. However, traditional methods face challenges such as handling big data, scalability, and computational intensity. To address these issues, this paper proposes a Convolutional Global Gated Recurrent-based Adaptive Gazelle (CGGR-AG) algorithm for medical image processing applications. The CGGR-AG algorithm detects abnormalities and classifies specific objects within images by leveraging Convolutional Neural Networks (CNNs) for feature extraction and Gated Recurrent Units (GRUs) for capturing sequential patterns. Additionally, the Adaptive Gazelle Optimization algorithm fine-tunes parameters to enhance the effectiveness of the CGGR-AG method. Experimental validation is conducted on Tuberculosis and heart disease datasets, evaluating performance metrics including recall, specificity, accuracy, Area Under the Curve – Receiver Operating Characteristic (AUC-ROC), precision, and F1-score. Comparative analysis with state-of-the-art methods demonstrates the effectiveness of the CGGR-AG method in medical image processing applications.</description><identifier>ISSN: 1868-6478</identifier><identifier>EISSN: 1868-6486</identifier><identifier>DOI: 10.1007/s12530-024-09598-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Abnormalities ; Adaptation ; Adaptive algorithms ; Artificial Intelligence ; Artificial neural networks ; Complex Systems ; Complexity ; Datasets ; Deep learning ; Effectiveness ; Efficiency ; Engineering ; Heart diseases ; Image enhancement ; Image processing ; Malaria ; Medical imaging ; Medical personnel ; Methods ; Object recognition ; Optimization algorithms ; Original Paper ; Performance measurement</subject><ispartof>Evolving systems, 2024-10, Vol.15 (5), p.1881-1893</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-8f68259d0b37f41cd0a198aa73cc2b15faa38cdc4a17a579e49809e1c59d6153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12530-024-09598-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12530-024-09598-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Maniraj, Subramanian Pitchiah</creatorcontrib><creatorcontrib>Chillakuru, Prameeladevi</creatorcontrib><creatorcontrib>Thangavel, Kavitha</creatorcontrib><creatorcontrib>Kadam, Archana</creatorcontrib><creatorcontrib>Meckanzi, Sangeetha</creatorcontrib><creatorcontrib>Cheerla, Sreevardhan</creatorcontrib><title>An efficient convolutional global gated recurrent-based adaptive gazelle algorithm for enhanced disease detection and classification</title><title>Evolving systems</title><addtitle>Evolving Systems</addtitle><description>In modern healthcare, medical image processing plays a vital role in enabling early disease detection, treatment planning, and improved patient care. However, traditional methods face challenges such as handling big data, scalability, and computational intensity. To address these issues, this paper proposes a Convolutional Global Gated Recurrent-based Adaptive Gazelle (CGGR-AG) algorithm for medical image processing applications. The CGGR-AG algorithm detects abnormalities and classifies specific objects within images by leveraging Convolutional Neural Networks (CNNs) for feature extraction and Gated Recurrent Units (GRUs) for capturing sequential patterns. Additionally, the Adaptive Gazelle Optimization algorithm fine-tunes parameters to enhance the effectiveness of the CGGR-AG method. Experimental validation is conducted on Tuberculosis and heart disease datasets, evaluating performance metrics including recall, specificity, accuracy, Area Under the Curve – Receiver Operating Characteristic (AUC-ROC), precision, and F1-score. Comparative analysis with state-of-the-art methods demonstrates the effectiveness of the CGGR-AG method in medical image processing applications.</description><subject>Abnormalities</subject><subject>Adaptation</subject><subject>Adaptive algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Complex Systems</subject><subject>Complexity</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Effectiveness</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Heart diseases</subject><subject>Image enhancement</subject><subject>Image processing</subject><subject>Malaria</subject><subject>Medical imaging</subject><subject>Medical personnel</subject><subject>Methods</subject><subject>Object recognition</subject><subject>Optimization algorithms</subject><subject>Original Paper</subject><subject>Performance measurement</subject><issn>1868-6478</issn><issn>1868-6486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEEhX0B1hZYh0Yx3k4y6riJVVi0701ccatqzQudlIJ1nw4LkGwYzV-3HMtnyS54XDHAar7wLNCQApZnkJd1DLlZ8mMy1KmZS7L8991JS-TeQg7AMh4DpBXs-Rz0TMyxmpL_cC064-uGwfreuzYpnPNaeBALfOkR-9jKG0wxD22eBjskeL1B3UdMew2ztthu2fGeUb9Fnsdc60NFAHW0kD6VMywb5nuMAQbn8XT0XVyYbALNP-ZV8n68WG9fE5Xr08vy8Uq1RnAkEpTyqyoW2hEZXKuW0BeS8RKaJ01vDCIQupW58grLKqa8lpCTVxHpuSFuEpup9qDd28jhUHt3OjjT4MSUZwUdZaLmMqmlPYuBE9GHbzdo39XHNTJt5p8q-hbfftWPEJigkIM9xvyf9X_UF-My4Xi</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Maniraj, Subramanian Pitchiah</creator><creator>Chillakuru, Prameeladevi</creator><creator>Thangavel, Kavitha</creator><creator>Kadam, Archana</creator><creator>Meckanzi, Sangeetha</creator><creator>Cheerla, Sreevardhan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20241001</creationdate><title>An efficient convolutional global gated recurrent-based adaptive gazelle algorithm for enhanced disease detection and classification</title><author>Maniraj, Subramanian Pitchiah ; Chillakuru, Prameeladevi ; Thangavel, Kavitha ; Kadam, Archana ; Meckanzi, Sangeetha ; Cheerla, Sreevardhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-8f68259d0b37f41cd0a198aa73cc2b15faa38cdc4a17a579e49809e1c59d6153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abnormalities</topic><topic>Adaptation</topic><topic>Adaptive algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Complex Systems</topic><topic>Complexity</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Effectiveness</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Heart diseases</topic><topic>Image enhancement</topic><topic>Image processing</topic><topic>Malaria</topic><topic>Medical imaging</topic><topic>Medical personnel</topic><topic>Methods</topic><topic>Object recognition</topic><topic>Optimization algorithms</topic><topic>Original Paper</topic><topic>Performance measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maniraj, Subramanian Pitchiah</creatorcontrib><creatorcontrib>Chillakuru, Prameeladevi</creatorcontrib><creatorcontrib>Thangavel, Kavitha</creatorcontrib><creatorcontrib>Kadam, Archana</creatorcontrib><creatorcontrib>Meckanzi, Sangeetha</creatorcontrib><creatorcontrib>Cheerla, Sreevardhan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Evolving systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maniraj, Subramanian Pitchiah</au><au>Chillakuru, Prameeladevi</au><au>Thangavel, Kavitha</au><au>Kadam, Archana</au><au>Meckanzi, Sangeetha</au><au>Cheerla, Sreevardhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient convolutional global gated recurrent-based adaptive gazelle algorithm for enhanced disease detection and classification</atitle><jtitle>Evolving systems</jtitle><stitle>Evolving Systems</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>15</volume><issue>5</issue><spage>1881</spage><epage>1893</epage><pages>1881-1893</pages><issn>1868-6478</issn><eissn>1868-6486</eissn><abstract>In modern healthcare, medical image processing plays a vital role in enabling early disease detection, treatment planning, and improved patient care. However, traditional methods face challenges such as handling big data, scalability, and computational intensity. To address these issues, this paper proposes a Convolutional Global Gated Recurrent-based Adaptive Gazelle (CGGR-AG) algorithm for medical image processing applications. The CGGR-AG algorithm detects abnormalities and classifies specific objects within images by leveraging Convolutional Neural Networks (CNNs) for feature extraction and Gated Recurrent Units (GRUs) for capturing sequential patterns. Additionally, the Adaptive Gazelle Optimization algorithm fine-tunes parameters to enhance the effectiveness of the CGGR-AG method. Experimental validation is conducted on Tuberculosis and heart disease datasets, evaluating performance metrics including recall, specificity, accuracy, Area Under the Curve – Receiver Operating Characteristic (AUC-ROC), precision, and F1-score. Comparative analysis with state-of-the-art methods demonstrates the effectiveness of the CGGR-AG method in medical image processing applications.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12530-024-09598-1</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1868-6478
ispartof Evolving systems, 2024-10, Vol.15 (5), p.1881-1893
issn 1868-6478
1868-6486
language eng
recordid cdi_proquest_journals_3095839243
source SpringerNature Journals
subjects Abnormalities
Adaptation
Adaptive algorithms
Artificial Intelligence
Artificial neural networks
Complex Systems
Complexity
Datasets
Deep learning
Effectiveness
Efficiency
Engineering
Heart diseases
Image enhancement
Image processing
Malaria
Medical imaging
Medical personnel
Methods
Object recognition
Optimization algorithms
Original Paper
Performance measurement
title An efficient convolutional global gated recurrent-based adaptive gazelle algorithm for enhanced disease detection and classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A26%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20convolutional%20global%20gated%20recurrent-based%20adaptive%20gazelle%20algorithm%20for%20enhanced%20disease%20detection%20and%20classification&rft.jtitle=Evolving%20systems&rft.au=Maniraj,%20Subramanian%20Pitchiah&rft.date=2024-10-01&rft.volume=15&rft.issue=5&rft.spage=1881&rft.epage=1893&rft.pages=1881-1893&rft.issn=1868-6478&rft.eissn=1868-6486&rft_id=info:doi/10.1007/s12530-024-09598-1&rft_dat=%3Cproquest_cross%3E3095839243%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095839243&rft_id=info:pmid/&rfr_iscdi=true