How to use the dispersion in the \(\chi^{(3)}\) tensor for broadband generation of polarization-entangled photons

Polarization-entangled photon pairs are a widely used resource in quantum optics and technologies, and are often produced using a nonlinear process. Most sources based on spontaneous parametric downconversion have relatively narrow optical bandwidth because the pump, signal and idler frequencies mus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Vento, Valeria, Ciccarello, Francesco, Amirtharaj, Sakthi Pryia, Galland, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Vento, Valeria
Ciccarello, Francesco
Amirtharaj, Sakthi Pryia
Galland, Christophe
description Polarization-entangled photon pairs are a widely used resource in quantum optics and technologies, and are often produced using a nonlinear process. Most sources based on spontaneous parametric downconversion have relatively narrow optical bandwidth because the pump, signal and idler frequencies must satisfy a phase-matching condition. Extending the bandwidth, for example to achieve spectral multiplexing, requires changing some experimental parameters such as temperature, crystal angle, poling period, etc. Here, we demonstrate broadband (tens of THz for each photon) generation of polarization-entangled photon pairs by spontaneous four-wave mixing in a diamond crystal, with a simple colinear geometry requiring no further optical engineering. Our approach leverages the quantum interference between electronic and vibrational contributions to the \(\chi^{(3)}\) tensor. Entanglement is characterized in a single realization of a Bell test over the entire bandwidth using fiber dispersion spectroscopy and fast single-photon detectors. The results agree with the biphoton wavefunction predicted from the knowledge of the \(\chi^{(3)}\) and Raman tensors and demonstrate the general applicability of our approach to other crystalline materials.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3095818883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095818883</sourcerecordid><originalsourceid>FETCH-proquest_journals_30958188833</originalsourceid><addsrcrecordid>eNqNi8FqwzAQREUg0ND4HxZySQ4GW6ob5Rxa8gE9mhqlWtsKZtfRygRa8u9JQz-gh2GYNzMztdDGlLl90fpJZSKnoij061ZXlVmo84EvkBgmQUg9gg8yYpTABIEepF7XX334_FmbzbXeQEISjtDedYzs_NGRhw4Jo0u_L25h5MHF8P3IOVJy1A3oYew5MclSzVs3CGZ__qxW728f-0M-Rj5PKKk58RTpXjWm2FW2tNYa87_VDc41SxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095818883</pqid></control><display><type>article</type><title>How to use the dispersion in the \(\chi^{(3)}\) tensor for broadband generation of polarization-entangled photons</title><source>Free E- Journals</source><creator>Vento, Valeria ; Ciccarello, Francesco ; Amirtharaj, Sakthi Pryia ; Galland, Christophe</creator><creatorcontrib>Vento, Valeria ; Ciccarello, Francesco ; Amirtharaj, Sakthi Pryia ; Galland, Christophe</creatorcontrib><description>Polarization-entangled photon pairs are a widely used resource in quantum optics and technologies, and are often produced using a nonlinear process. Most sources based on spontaneous parametric downconversion have relatively narrow optical bandwidth because the pump, signal and idler frequencies must satisfy a phase-matching condition. Extending the bandwidth, for example to achieve spectral multiplexing, requires changing some experimental parameters such as temperature, crystal angle, poling period, etc. Here, we demonstrate broadband (tens of THz for each photon) generation of polarization-entangled photon pairs by spontaneous four-wave mixing in a diamond crystal, with a simple colinear geometry requiring no further optical engineering. Our approach leverages the quantum interference between electronic and vibrational contributions to the \(\chi^{(3)}\) tensor. Entanglement is characterized in a single realization of a Bell test over the entire bandwidth using fiber dispersion spectroscopy and fast single-photon detectors. The results agree with the biphoton wavefunction predicted from the knowledge of the \(\chi^{(3)}\) and Raman tensors and demonstrate the general applicability of our approach to other crystalline materials.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bandwidths ; Broadband ; Four-wave mixing ; Multiplexing ; Nonlinear phenomena ; Phase matching ; Photons ; Polarization ; Quantum entanglement ; Quantum optics ; Tensors ; Wave functions</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Vento, Valeria</creatorcontrib><creatorcontrib>Ciccarello, Francesco</creatorcontrib><creatorcontrib>Amirtharaj, Sakthi Pryia</creatorcontrib><creatorcontrib>Galland, Christophe</creatorcontrib><title>How to use the dispersion in the \(\chi^{(3)}\) tensor for broadband generation of polarization-entangled photons</title><title>arXiv.org</title><description>Polarization-entangled photon pairs are a widely used resource in quantum optics and technologies, and are often produced using a nonlinear process. Most sources based on spontaneous parametric downconversion have relatively narrow optical bandwidth because the pump, signal and idler frequencies must satisfy a phase-matching condition. Extending the bandwidth, for example to achieve spectral multiplexing, requires changing some experimental parameters such as temperature, crystal angle, poling period, etc. Here, we demonstrate broadband (tens of THz for each photon) generation of polarization-entangled photon pairs by spontaneous four-wave mixing in a diamond crystal, with a simple colinear geometry requiring no further optical engineering. Our approach leverages the quantum interference between electronic and vibrational contributions to the \(\chi^{(3)}\) tensor. Entanglement is characterized in a single realization of a Bell test over the entire bandwidth using fiber dispersion spectroscopy and fast single-photon detectors. The results agree with the biphoton wavefunction predicted from the knowledge of the \(\chi^{(3)}\) and Raman tensors and demonstrate the general applicability of our approach to other crystalline materials.</description><subject>Bandwidths</subject><subject>Broadband</subject><subject>Four-wave mixing</subject><subject>Multiplexing</subject><subject>Nonlinear phenomena</subject><subject>Phase matching</subject><subject>Photons</subject><subject>Polarization</subject><subject>Quantum entanglement</subject><subject>Quantum optics</subject><subject>Tensors</subject><subject>Wave functions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi8FqwzAQREUg0ND4HxZySQ4GW6ob5Rxa8gE9mhqlWtsKZtfRygRa8u9JQz-gh2GYNzMztdDGlLl90fpJZSKnoij061ZXlVmo84EvkBgmQUg9gg8yYpTABIEepF7XX334_FmbzbXeQEISjtDedYzs_NGRhw4Jo0u_L25h5MHF8P3IOVJy1A3oYew5MclSzVs3CGZ__qxW728f-0M-Rj5PKKk58RTpXjWm2FW2tNYa87_VDc41SxA</recordid><startdate>20240821</startdate><enddate>20240821</enddate><creator>Vento, Valeria</creator><creator>Ciccarello, Francesco</creator><creator>Amirtharaj, Sakthi Pryia</creator><creator>Galland, Christophe</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240821</creationdate><title>How to use the dispersion in the \(\chi^{(3)}\) tensor for broadband generation of polarization-entangled photons</title><author>Vento, Valeria ; Ciccarello, Francesco ; Amirtharaj, Sakthi Pryia ; Galland, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30958188833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bandwidths</topic><topic>Broadband</topic><topic>Four-wave mixing</topic><topic>Multiplexing</topic><topic>Nonlinear phenomena</topic><topic>Phase matching</topic><topic>Photons</topic><topic>Polarization</topic><topic>Quantum entanglement</topic><topic>Quantum optics</topic><topic>Tensors</topic><topic>Wave functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Vento, Valeria</creatorcontrib><creatorcontrib>Ciccarello, Francesco</creatorcontrib><creatorcontrib>Amirtharaj, Sakthi Pryia</creatorcontrib><creatorcontrib>Galland, Christophe</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vento, Valeria</au><au>Ciccarello, Francesco</au><au>Amirtharaj, Sakthi Pryia</au><au>Galland, Christophe</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>How to use the dispersion in the \(\chi^{(3)}\) tensor for broadband generation of polarization-entangled photons</atitle><jtitle>arXiv.org</jtitle><date>2024-08-21</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Polarization-entangled photon pairs are a widely used resource in quantum optics and technologies, and are often produced using a nonlinear process. Most sources based on spontaneous parametric downconversion have relatively narrow optical bandwidth because the pump, signal and idler frequencies must satisfy a phase-matching condition. Extending the bandwidth, for example to achieve spectral multiplexing, requires changing some experimental parameters such as temperature, crystal angle, poling period, etc. Here, we demonstrate broadband (tens of THz for each photon) generation of polarization-entangled photon pairs by spontaneous four-wave mixing in a diamond crystal, with a simple colinear geometry requiring no further optical engineering. Our approach leverages the quantum interference between electronic and vibrational contributions to the \(\chi^{(3)}\) tensor. Entanglement is characterized in a single realization of a Bell test over the entire bandwidth using fiber dispersion spectroscopy and fast single-photon detectors. The results agree with the biphoton wavefunction predicted from the knowledge of the \(\chi^{(3)}\) and Raman tensors and demonstrate the general applicability of our approach to other crystalline materials.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_3095818883
source Free E- Journals
subjects Bandwidths
Broadband
Four-wave mixing
Multiplexing
Nonlinear phenomena
Phase matching
Photons
Polarization
Quantum entanglement
Quantum optics
Tensors
Wave functions
title How to use the dispersion in the \(\chi^{(3)}\) tensor for broadband generation of polarization-entangled photons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A43%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=How%20to%20use%20the%20dispersion%20in%20the%20%5C(%5Cchi%5E%7B(3)%7D%5C)%20tensor%20for%20broadband%20generation%20of%20polarization-entangled%20photons&rft.jtitle=arXiv.org&rft.au=Vento,%20Valeria&rft.date=2024-08-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3095818883%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095818883&rft_id=info:pmid/&rfr_iscdi=true