Surface Enrichment in Gallium‐Indium Liquid Alloys: Applied to CO2 Conversion

Liquid metal alloys can accumulate specific solute metal atoms on their surface, creating distinct quasi‐ordered atomic layers. Such atomic layers can be tuned by varying the alloy composition to form catalytic interfaces suited for multi‐step reactions. Here, the surface enrichment in gallium‐indiu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-08, Vol.34 (34), p.n/a
Hauptverfasser: Gholampoursaadi, Fahimeh, Zhi, Xing, Nour, Shirin, Liu, Jefferson Zhe, Li, Gang Kevin, Mayyas, Mohannad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 34
container_start_page
container_title Advanced functional materials
container_volume 34
creator Gholampoursaadi, Fahimeh
Zhi, Xing
Nour, Shirin
Liu, Jefferson Zhe
Li, Gang Kevin
Mayyas, Mohannad
description Liquid metal alloys can accumulate specific solute metal atoms on their surface, creating distinct quasi‐ordered atomic layers. Such atomic layers can be tuned by varying the alloy composition to form catalytic interfaces suited for multi‐step reactions. Here, the surface enrichment in gallium‐indium alloys is studied and utilized for carbon dioxide (CO2) electrochemical reduction. The results show that adding a small amount of indium (16.8 at%) to gallium leads to a significant indium enrichment of >83 at% on the topmost layer of the alloy. This enrichment dictates the CO2 conversion pathway, leading to 98% faradaic efficiency toward formate at −1.90 V vs reversible hydrogen electrode (RHE). This study produces unprecedented insights into key interfacial processes and lays the foundation for significant further work within the areas of catalysis and liquid metals. Adding 16.8 at% of indium to gallium leads to a significant indium enrichment of >83 at% on the topmost layer of the liquid alloy catalyst. Surface enrichment provides suitable catalytic interfaces for a highly efficient carbon dioxide reduction reaction (CO2RR). The enrichment of indium alters the CO2RRpathway, from carbon monoxide (CO)‐dominated production by gallium to formate‐dominated production by indium.
doi_str_mv 10.1002/adfm.202316435
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3095812146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095812146</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2735-13edf4a7deb2bbf96cece61a407673bee2b72058f536daf7f33ec73352d015a3</originalsourceid><addsrcrecordid>eNo9kM1KAzEcxIMoWKtXzwHPW5P8N0nrbVnbWqj0YA_eQnaTYEr2o9mu0puP4DP6JLZUepoZGGbgh9A9JSNKCHvUxlUjRhhQkQK_QAMqqEiAsPHl2dP3a3TTdRtCqJSQDtDqrY9OlxZP6-jLj8rWO-xrPNch-L76_f5Z1OZg8NJve29wFkKz755w1rbBW4N3Dc5XDOdN_Wlj55v6Fl05HTp7969DtJ5N1_lLslzNF3m2TFomgScUrHGplsYWrCjcRJS2tILqlEghobCWFZIRPnYchNFOOgBbSgDODKFcwxA9nGbb2Gx72-3UpuljfXhUQCZ8TBlNxaE1ObW-fLB71UZf6bhXlKgjMHUEps7AVPY8ez0n-APBJ2Is</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095812146</pqid></control><display><type>article</type><title>Surface Enrichment in Gallium‐Indium Liquid Alloys: Applied to CO2 Conversion</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gholampoursaadi, Fahimeh ; Zhi, Xing ; Nour, Shirin ; Liu, Jefferson Zhe ; Li, Gang Kevin ; Mayyas, Mohannad</creator><creatorcontrib>Gholampoursaadi, Fahimeh ; Zhi, Xing ; Nour, Shirin ; Liu, Jefferson Zhe ; Li, Gang Kevin ; Mayyas, Mohannad</creatorcontrib><description>Liquid metal alloys can accumulate specific solute metal atoms on their surface, creating distinct quasi‐ordered atomic layers. Such atomic layers can be tuned by varying the alloy composition to form catalytic interfaces suited for multi‐step reactions. Here, the surface enrichment in gallium‐indium alloys is studied and utilized for carbon dioxide (CO2) electrochemical reduction. The results show that adding a small amount of indium (16.8 at%) to gallium leads to a significant indium enrichment of &gt;83 at% on the topmost layer of the alloy. This enrichment dictates the CO2 conversion pathway, leading to 98% faradaic efficiency toward formate at −1.90 V vs reversible hydrogen electrode (RHE). This study produces unprecedented insights into key interfacial processes and lays the foundation for significant further work within the areas of catalysis and liquid metals. Adding 16.8 at% of indium to gallium leads to a significant indium enrichment of &gt;83 at% on the topmost layer of the liquid alloy catalyst. Surface enrichment provides suitable catalytic interfaces for a highly efficient carbon dioxide reduction reaction (CO2RR). The enrichment of indium alters the CO2RRpathway, from carbon monoxide (CO)‐dominated production by gallium to formate‐dominated production by indium.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202316435</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Catalytic converters ; Chemical reactions ; Chemical reduction ; electrocatalysis ; Enrichment ; formate ; Gallium ; Indium ; Indium base alloys ; Intermetallic compounds ; Liquid alloys ; liquid metal catalyst ; Liquid metals ; surface atomic layers</subject><ispartof>Advanced functional materials, 2024-08, Vol.34 (34), p.n/a</ispartof><rights>2024 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1852-6687 ; 0009-0006-9934-7363</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202316435$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202316435$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Gholampoursaadi, Fahimeh</creatorcontrib><creatorcontrib>Zhi, Xing</creatorcontrib><creatorcontrib>Nour, Shirin</creatorcontrib><creatorcontrib>Liu, Jefferson Zhe</creatorcontrib><creatorcontrib>Li, Gang Kevin</creatorcontrib><creatorcontrib>Mayyas, Mohannad</creatorcontrib><title>Surface Enrichment in Gallium‐Indium Liquid Alloys: Applied to CO2 Conversion</title><title>Advanced functional materials</title><description>Liquid metal alloys can accumulate specific solute metal atoms on their surface, creating distinct quasi‐ordered atomic layers. Such atomic layers can be tuned by varying the alloy composition to form catalytic interfaces suited for multi‐step reactions. Here, the surface enrichment in gallium‐indium alloys is studied and utilized for carbon dioxide (CO2) electrochemical reduction. The results show that adding a small amount of indium (16.8 at%) to gallium leads to a significant indium enrichment of &gt;83 at% on the topmost layer of the alloy. This enrichment dictates the CO2 conversion pathway, leading to 98% faradaic efficiency toward formate at −1.90 V vs reversible hydrogen electrode (RHE). This study produces unprecedented insights into key interfacial processes and lays the foundation for significant further work within the areas of catalysis and liquid metals. Adding 16.8 at% of indium to gallium leads to a significant indium enrichment of &gt;83 at% on the topmost layer of the liquid alloy catalyst. Surface enrichment provides suitable catalytic interfaces for a highly efficient carbon dioxide reduction reaction (CO2RR). The enrichment of indium alters the CO2RRpathway, from carbon monoxide (CO)‐dominated production by gallium to formate‐dominated production by indium.</description><subject>Carbon dioxide</subject><subject>Catalytic converters</subject><subject>Chemical reactions</subject><subject>Chemical reduction</subject><subject>electrocatalysis</subject><subject>Enrichment</subject><subject>formate</subject><subject>Gallium</subject><subject>Indium</subject><subject>Indium base alloys</subject><subject>Intermetallic compounds</subject><subject>Liquid alloys</subject><subject>liquid metal catalyst</subject><subject>Liquid metals</subject><subject>surface atomic layers</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNo9kM1KAzEcxIMoWKtXzwHPW5P8N0nrbVnbWqj0YA_eQnaTYEr2o9mu0puP4DP6JLZUepoZGGbgh9A9JSNKCHvUxlUjRhhQkQK_QAMqqEiAsPHl2dP3a3TTdRtCqJSQDtDqrY9OlxZP6-jLj8rWO-xrPNch-L76_f5Z1OZg8NJve29wFkKz755w1rbBW4N3Dc5XDOdN_Wlj55v6Fl05HTp7969DtJ5N1_lLslzNF3m2TFomgScUrHGplsYWrCjcRJS2tILqlEghobCWFZIRPnYchNFOOgBbSgDODKFcwxA9nGbb2Gx72-3UpuljfXhUQCZ8TBlNxaE1ObW-fLB71UZf6bhXlKgjMHUEps7AVPY8ez0n-APBJ2Is</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Gholampoursaadi, Fahimeh</creator><creator>Zhi, Xing</creator><creator>Nour, Shirin</creator><creator>Liu, Jefferson Zhe</creator><creator>Li, Gang Kevin</creator><creator>Mayyas, Mohannad</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1852-6687</orcidid><orcidid>https://orcid.org/0009-0006-9934-7363</orcidid></search><sort><creationdate>20240801</creationdate><title>Surface Enrichment in Gallium‐Indium Liquid Alloys: Applied to CO2 Conversion</title><author>Gholampoursaadi, Fahimeh ; Zhi, Xing ; Nour, Shirin ; Liu, Jefferson Zhe ; Li, Gang Kevin ; Mayyas, Mohannad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2735-13edf4a7deb2bbf96cece61a407673bee2b72058f536daf7f33ec73352d015a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon dioxide</topic><topic>Catalytic converters</topic><topic>Chemical reactions</topic><topic>Chemical reduction</topic><topic>electrocatalysis</topic><topic>Enrichment</topic><topic>formate</topic><topic>Gallium</topic><topic>Indium</topic><topic>Indium base alloys</topic><topic>Intermetallic compounds</topic><topic>Liquid alloys</topic><topic>liquid metal catalyst</topic><topic>Liquid metals</topic><topic>surface atomic layers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gholampoursaadi, Fahimeh</creatorcontrib><creatorcontrib>Zhi, Xing</creatorcontrib><creatorcontrib>Nour, Shirin</creatorcontrib><creatorcontrib>Liu, Jefferson Zhe</creatorcontrib><creatorcontrib>Li, Gang Kevin</creatorcontrib><creatorcontrib>Mayyas, Mohannad</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gholampoursaadi, Fahimeh</au><au>Zhi, Xing</au><au>Nour, Shirin</au><au>Liu, Jefferson Zhe</au><au>Li, Gang Kevin</au><au>Mayyas, Mohannad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Enrichment in Gallium‐Indium Liquid Alloys: Applied to CO2 Conversion</atitle><jtitle>Advanced functional materials</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>34</volume><issue>34</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Liquid metal alloys can accumulate specific solute metal atoms on their surface, creating distinct quasi‐ordered atomic layers. Such atomic layers can be tuned by varying the alloy composition to form catalytic interfaces suited for multi‐step reactions. Here, the surface enrichment in gallium‐indium alloys is studied and utilized for carbon dioxide (CO2) electrochemical reduction. The results show that adding a small amount of indium (16.8 at%) to gallium leads to a significant indium enrichment of &gt;83 at% on the topmost layer of the alloy. This enrichment dictates the CO2 conversion pathway, leading to 98% faradaic efficiency toward formate at −1.90 V vs reversible hydrogen electrode (RHE). This study produces unprecedented insights into key interfacial processes and lays the foundation for significant further work within the areas of catalysis and liquid metals. Adding 16.8 at% of indium to gallium leads to a significant indium enrichment of &gt;83 at% on the topmost layer of the liquid alloy catalyst. Surface enrichment provides suitable catalytic interfaces for a highly efficient carbon dioxide reduction reaction (CO2RR). The enrichment of indium alters the CO2RRpathway, from carbon monoxide (CO)‐dominated production by gallium to formate‐dominated production by indium.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202316435</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1852-6687</orcidid><orcidid>https://orcid.org/0009-0006-9934-7363</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-08, Vol.34 (34), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3095812146
source Wiley Online Library Journals Frontfile Complete
subjects Carbon dioxide
Catalytic converters
Chemical reactions
Chemical reduction
electrocatalysis
Enrichment
formate
Gallium
Indium
Indium base alloys
Intermetallic compounds
Liquid alloys
liquid metal catalyst
Liquid metals
surface atomic layers
title Surface Enrichment in Gallium‐Indium Liquid Alloys: Applied to CO2 Conversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A55%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Enrichment%20in%20Gallium%E2%80%90Indium%20Liquid%20Alloys:%20Applied%20to%20CO2%20Conversion&rft.jtitle=Advanced%20functional%20materials&rft.au=Gholampoursaadi,%20Fahimeh&rft.date=2024-08-01&rft.volume=34&rft.issue=34&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202316435&rft_dat=%3Cproquest_wiley%3E3095812146%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095812146&rft_id=info:pmid/&rfr_iscdi=true