All‐Optical Organic–Inorganic Hybrid Waveguide Switches Based on Photothermal Effect of Au‐MOF Composites
In this study, all‐optical organic–inorganic hybrid waveguide switches are proposed based on the photothermal effect of Au‐MOF composites. The embedded waveguide structure is directly defined using SiO2 grooves on a silicon substrate. Self‐synthesized Au‐MOF/PMMA and SiO2‐TiO2 network grafting PMMA...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-08, Vol.34 (34), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 34 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Cui, Anqi Miao, Xiaoya Yue, Jian Sun, Xiangyi Yu, Qidong Zhang, Daming Zhang, Tong Fei, Teng Chen, Changming |
description | In this study, all‐optical organic–inorganic hybrid waveguide switches are proposed based on the photothermal effect of Au‐MOF composites. The embedded waveguide structure is directly defined using SiO2 grooves on a silicon substrate. Self‐synthesized Au‐MOF/PMMA and SiO2‐TiO2 network grafting PMMA are used as the core and cladding materials, respectively. The organic–inorganic hybrid shielding layer is formed using an oxygen ion etching process to avoid corrosion from the cladding solvent. A directional coupling switching structure is designed and fabricated. The switching time of the all‐optical device is 500 µs, the photothermal tuning sensitivity is 19.10 nm mW−1, the driving optical power consumption is 0.67 mW, and the extinction ratio is close to 9.83 dB. This technique is desirable for photothermal control of light in an all‐optical signal‐processing network.
An all‐optical waveguide switch based on photothermal effect of Au‐MOF composites is designed and fabricated. The MOF structure provides a stable loading platform for Au nanoparticles in PMMA to improve the photothermal effect significantly. The organic–inorganic hybrid shielding layer is formed to avoid corrosion from the cladding solvent. The device shows low consumption, high sensitivity, and quick‐responding. |
doi_str_mv | 10.1002/adfm.202401880 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3095811301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095811301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2720-e75d5bb07f9baa9f3f3fd5585b6217650234374cd49b1a163b6b832652c8f28f3</originalsourceid><addsrcrecordid>eNqFkMtKw0AYhYMoWKtb1wOuU-eS6zJWawstEVR0N8wkM-2UJBNnEkt3fQTBN-yTmBKpS_kX5yzOOT98jnON4AhBiG9ZLssRhtiDKIrgiTNAAQpcAnF0evTo_dy5sHYNIQpD4g0cnRTFfveV1o3KWAFSs2SVyva771mlew-mW25UDt7Yp1i2KhfgeaOabCUsuGNW5EBX4GmlG92shCm7jQcpRdYALUHSdtOLdALGuqy1VY2wl86ZZIUVV786dF4nDy_jqTtPH2fjZO5mOMTQFaGf-5zDUMacsViS7nLfj3weYBQGPsTEI6GX5V7MEUMB4QGPCA58nEUSR5IMnZt-tzb6oxW2oWvdmqp7SQmM_QihDkaXGvWpzGhrjZC0NqpkZksRpAeo9ACVHqF2hbgvbFQhtv-kaXI_Wfx1fwAIpX3u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095811301</pqid></control><display><type>article</type><title>All‐Optical Organic–Inorganic Hybrid Waveguide Switches Based on Photothermal Effect of Au‐MOF Composites</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cui, Anqi ; Miao, Xiaoya ; Yue, Jian ; Sun, Xiangyi ; Yu, Qidong ; Zhang, Daming ; Zhang, Tong ; Fei, Teng ; Chen, Changming</creator><creatorcontrib>Cui, Anqi ; Miao, Xiaoya ; Yue, Jian ; Sun, Xiangyi ; Yu, Qidong ; Zhang, Daming ; Zhang, Tong ; Fei, Teng ; Chen, Changming</creatorcontrib><description>In this study, all‐optical organic–inorganic hybrid waveguide switches are proposed based on the photothermal effect of Au‐MOF composites. The embedded waveguide structure is directly defined using SiO2 grooves on a silicon substrate. Self‐synthesized Au‐MOF/PMMA and SiO2‐TiO2 network grafting PMMA are used as the core and cladding materials, respectively. The organic–inorganic hybrid shielding layer is formed using an oxygen ion etching process to avoid corrosion from the cladding solvent. A directional coupling switching structure is designed and fabricated. The switching time of the all‐optical device is 500 µs, the photothermal tuning sensitivity is 19.10 nm mW−1, the driving optical power consumption is 0.67 mW, and the extinction ratio is close to 9.83 dB. This technique is desirable for photothermal control of light in an all‐optical signal‐processing network.
An all‐optical waveguide switch based on photothermal effect of Au‐MOF composites is designed and fabricated. The MOF structure provides a stable loading platform for Au nanoparticles in PMMA to improve the photothermal effect significantly. The organic–inorganic hybrid shielding layer is formed to avoid corrosion from the cladding solvent. The device shows low consumption, high sensitivity, and quick‐responding.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202401880</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>all‐optical waveguide switches ; Au‐MOF ; Cladding ; Composite materials ; Grooves ; Ion etching ; organic–inorganic hybrid waveguide ; Oxygen ions ; photothermal effect ; Polymethyl methacrylate ; Silicon dioxide ; Silicon substrates ; Switches ; Switching ; Titanium dioxide ; Waveguides</subject><ispartof>Advanced functional materials, 2024-08, Vol.34 (34), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2720-e75d5bb07f9baa9f3f3fd5585b6217650234374cd49b1a163b6b832652c8f28f3</cites><orcidid>0000-0002-7400-6662</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202401880$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202401880$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Cui, Anqi</creatorcontrib><creatorcontrib>Miao, Xiaoya</creatorcontrib><creatorcontrib>Yue, Jian</creatorcontrib><creatorcontrib>Sun, Xiangyi</creatorcontrib><creatorcontrib>Yu, Qidong</creatorcontrib><creatorcontrib>Zhang, Daming</creatorcontrib><creatorcontrib>Zhang, Tong</creatorcontrib><creatorcontrib>Fei, Teng</creatorcontrib><creatorcontrib>Chen, Changming</creatorcontrib><title>All‐Optical Organic–Inorganic Hybrid Waveguide Switches Based on Photothermal Effect of Au‐MOF Composites</title><title>Advanced functional materials</title><description>In this study, all‐optical organic–inorganic hybrid waveguide switches are proposed based on the photothermal effect of Au‐MOF composites. The embedded waveguide structure is directly defined using SiO2 grooves on a silicon substrate. Self‐synthesized Au‐MOF/PMMA and SiO2‐TiO2 network grafting PMMA are used as the core and cladding materials, respectively. The organic–inorganic hybrid shielding layer is formed using an oxygen ion etching process to avoid corrosion from the cladding solvent. A directional coupling switching structure is designed and fabricated. The switching time of the all‐optical device is 500 µs, the photothermal tuning sensitivity is 19.10 nm mW−1, the driving optical power consumption is 0.67 mW, and the extinction ratio is close to 9.83 dB. This technique is desirable for photothermal control of light in an all‐optical signal‐processing network.
An all‐optical waveguide switch based on photothermal effect of Au‐MOF composites is designed and fabricated. The MOF structure provides a stable loading platform for Au nanoparticles in PMMA to improve the photothermal effect significantly. The organic–inorganic hybrid shielding layer is formed to avoid corrosion from the cladding solvent. The device shows low consumption, high sensitivity, and quick‐responding.</description><subject>all‐optical waveguide switches</subject><subject>Au‐MOF</subject><subject>Cladding</subject><subject>Composite materials</subject><subject>Grooves</subject><subject>Ion etching</subject><subject>organic–inorganic hybrid waveguide</subject><subject>Oxygen ions</subject><subject>photothermal effect</subject><subject>Polymethyl methacrylate</subject><subject>Silicon dioxide</subject><subject>Silicon substrates</subject><subject>Switches</subject><subject>Switching</subject><subject>Titanium dioxide</subject><subject>Waveguides</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKw0AYhYMoWKtb1wOuU-eS6zJWawstEVR0N8wkM-2UJBNnEkt3fQTBN-yTmBKpS_kX5yzOOT98jnON4AhBiG9ZLssRhtiDKIrgiTNAAQpcAnF0evTo_dy5sHYNIQpD4g0cnRTFfveV1o3KWAFSs2SVyva771mlew-mW25UDt7Yp1i2KhfgeaOabCUsuGNW5EBX4GmlG92shCm7jQcpRdYALUHSdtOLdALGuqy1VY2wl86ZZIUVV786dF4nDy_jqTtPH2fjZO5mOMTQFaGf-5zDUMacsViS7nLfj3weYBQGPsTEI6GX5V7MEUMB4QGPCA58nEUSR5IMnZt-tzb6oxW2oWvdmqp7SQmM_QihDkaXGvWpzGhrjZC0NqpkZksRpAeo9ACVHqF2hbgvbFQhtv-kaXI_Wfx1fwAIpX3u</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Cui, Anqi</creator><creator>Miao, Xiaoya</creator><creator>Yue, Jian</creator><creator>Sun, Xiangyi</creator><creator>Yu, Qidong</creator><creator>Zhang, Daming</creator><creator>Zhang, Tong</creator><creator>Fei, Teng</creator><creator>Chen, Changming</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7400-6662</orcidid></search><sort><creationdate>20240801</creationdate><title>All‐Optical Organic–Inorganic Hybrid Waveguide Switches Based on Photothermal Effect of Au‐MOF Composites</title><author>Cui, Anqi ; Miao, Xiaoya ; Yue, Jian ; Sun, Xiangyi ; Yu, Qidong ; Zhang, Daming ; Zhang, Tong ; Fei, Teng ; Chen, Changming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2720-e75d5bb07f9baa9f3f3fd5585b6217650234374cd49b1a163b6b832652c8f28f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>all‐optical waveguide switches</topic><topic>Au‐MOF</topic><topic>Cladding</topic><topic>Composite materials</topic><topic>Grooves</topic><topic>Ion etching</topic><topic>organic–inorganic hybrid waveguide</topic><topic>Oxygen ions</topic><topic>photothermal effect</topic><topic>Polymethyl methacrylate</topic><topic>Silicon dioxide</topic><topic>Silicon substrates</topic><topic>Switches</topic><topic>Switching</topic><topic>Titanium dioxide</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Anqi</creatorcontrib><creatorcontrib>Miao, Xiaoya</creatorcontrib><creatorcontrib>Yue, Jian</creatorcontrib><creatorcontrib>Sun, Xiangyi</creatorcontrib><creatorcontrib>Yu, Qidong</creatorcontrib><creatorcontrib>Zhang, Daming</creatorcontrib><creatorcontrib>Zhang, Tong</creatorcontrib><creatorcontrib>Fei, Teng</creatorcontrib><creatorcontrib>Chen, Changming</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Anqi</au><au>Miao, Xiaoya</au><au>Yue, Jian</au><au>Sun, Xiangyi</au><au>Yu, Qidong</au><au>Zhang, Daming</au><au>Zhang, Tong</au><au>Fei, Teng</au><au>Chen, Changming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>All‐Optical Organic–Inorganic Hybrid Waveguide Switches Based on Photothermal Effect of Au‐MOF Composites</atitle><jtitle>Advanced functional materials</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>34</volume><issue>34</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>In this study, all‐optical organic–inorganic hybrid waveguide switches are proposed based on the photothermal effect of Au‐MOF composites. The embedded waveguide structure is directly defined using SiO2 grooves on a silicon substrate. Self‐synthesized Au‐MOF/PMMA and SiO2‐TiO2 network grafting PMMA are used as the core and cladding materials, respectively. The organic–inorganic hybrid shielding layer is formed using an oxygen ion etching process to avoid corrosion from the cladding solvent. A directional coupling switching structure is designed and fabricated. The switching time of the all‐optical device is 500 µs, the photothermal tuning sensitivity is 19.10 nm mW−1, the driving optical power consumption is 0.67 mW, and the extinction ratio is close to 9.83 dB. This technique is desirable for photothermal control of light in an all‐optical signal‐processing network.
An all‐optical waveguide switch based on photothermal effect of Au‐MOF composites is designed and fabricated. The MOF structure provides a stable loading platform for Au nanoparticles in PMMA to improve the photothermal effect significantly. The organic–inorganic hybrid shielding layer is formed to avoid corrosion from the cladding solvent. The device shows low consumption, high sensitivity, and quick‐responding.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202401880</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7400-6662</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-08, Vol.34 (34), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_3095811301 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | all‐optical waveguide switches Au‐MOF Cladding Composite materials Grooves Ion etching organic–inorganic hybrid waveguide Oxygen ions photothermal effect Polymethyl methacrylate Silicon dioxide Silicon substrates Switches Switching Titanium dioxide Waveguides |
title | All‐Optical Organic–Inorganic Hybrid Waveguide Switches Based on Photothermal Effect of Au‐MOF Composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A50%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=All%E2%80%90Optical%20Organic%E2%80%93Inorganic%20Hybrid%20Waveguide%20Switches%20Based%20on%20Photothermal%20Effect%20of%20Au%E2%80%90MOF%20Composites&rft.jtitle=Advanced%20functional%20materials&rft.au=Cui,%20Anqi&rft.date=2024-08-01&rft.volume=34&rft.issue=34&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202401880&rft_dat=%3Cproquest_cross%3E3095811301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095811301&rft_id=info:pmid/&rfr_iscdi=true |