Real-time anomaly detection for ‘Remote’ bus stop surveillance using unsupervised conditional generative adversarial networks
In response to the imbalance between normal and abnormal samples in existing anomaly detection datasets, as well as the complexity in defining anomalies, we introduce a new dataset named Remote Stop to provide data support for existing algorithms. Concurrently, we propose an unsupervised video anoma...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2024-09, Vol.36 (25), p.15799-15813 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15813 |
---|---|
container_issue | 25 |
container_start_page | 15799 |
container_title | Neural computing & applications |
container_volume | 36 |
creator | Xi, Beihao Chen, Qingkui |
description | In response to the imbalance between normal and abnormal samples in existing anomaly detection datasets, as well as the complexity in defining anomalies, we introduce a new dataset named Remote Stop to provide data support for existing algorithms. Concurrently, we propose an unsupervised video anomaly detection method based on conditional generative adversarial networks. Our approach trains the model to learn the distribution of normal video data, enabling it to identify anomalous events. The incorporation of a spatial attention mechanism enhances the model’s performance in detecting abnormal behaviors in video frames while maintaining high processing efficiency. Moreover, unlike other methods that assess the entire image, our approach uses overlapping image blocks to determine anomalies, enhancing the accuracy and robustness of the model in image segmentation. These innovations not only address the issues of scarce samples and high-cost labeling but also provide new perspectives and tools for video anomaly detection in the field of public safety. The effectiveness of the model was validated on the Avenue and Ped2 datasets and applied to our newly created dataset (Remote Stop), achieving an AUC of 84.3% and processing 61 video frames per second. This enables efficient sequential processing of large-scale video data, offering positive contributions to enhancing public road safety by providing early warnings and enabling timely preventive measures. |
doi_str_mv | 10.1007/s00521-024-09911-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3095797734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095797734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1858-269a7aa3a107a15cec2e09d09063c8ba7dcc6d91efb761574d414365feb3eccd3</originalsourceid><addsrcrecordid>eNp9kMFO3DAQhq2qSN0CL8DJEufAOE7i-IgQLUhISAjOlteerEyz9taTLOJG3wJejyep6SJx62mkmf__Z-Zj7EjAiQBQpwTQ1qKCuqlAayGq_gtbiEbKSkLbf2UL0E0Zd438xr4TPQBA0_Xtgv25RTtWU1gjtzGt7fjEPU7oppAiH1Lmb88vt7hOE749v_LlTJymtOE05y2GcbTRIZ8pxBWfI80bzNtA6LlL0Yf3DDvyFUbMdgrbssJvMZPNobQjTo8p_6IDtjfYkfDwo-6z-x8Xd-eX1fXNz6vzs-vKib7tq7rTVlkrrQBlRevQ1Qjag4ZOun5plXeu81rgsFSdaFXjm_J_1w64lOicl_vseJe7yen3jDSZhzTnciAZCbpVWinZFFW9U7mciDIOZpPD2uYnI8C8ozY71KagNv9Qm76Y5M5ERRxXmD-j_-P6CzaPhyY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095797734</pqid></control><display><type>article</type><title>Real-time anomaly detection for ‘Remote’ bus stop surveillance using unsupervised conditional generative adversarial networks</title><source>SpringerLink Journals - AutoHoldings</source><creator>Xi, Beihao ; Chen, Qingkui</creator><creatorcontrib>Xi, Beihao ; Chen, Qingkui</creatorcontrib><description>In response to the imbalance between normal and abnormal samples in existing anomaly detection datasets, as well as the complexity in defining anomalies, we introduce a new dataset named Remote Stop to provide data support for existing algorithms. Concurrently, we propose an unsupervised video anomaly detection method based on conditional generative adversarial networks. Our approach trains the model to learn the distribution of normal video data, enabling it to identify anomalous events. The incorporation of a spatial attention mechanism enhances the model’s performance in detecting abnormal behaviors in video frames while maintaining high processing efficiency. Moreover, unlike other methods that assess the entire image, our approach uses overlapping image blocks to determine anomalies, enhancing the accuracy and robustness of the model in image segmentation. These innovations not only address the issues of scarce samples and high-cost labeling but also provide new perspectives and tools for video anomaly detection in the field of public safety. The effectiveness of the model was validated on the Avenue and Ped2 datasets and applied to our newly created dataset (Remote Stop), achieving an AUC of 84.3% and processing 61 video frames per second. This enables efficient sequential processing of large-scale video data, offering positive contributions to enhancing public road safety by providing early warnings and enabling timely preventive measures.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-024-09911-8</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Anomalies ; Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Datasets ; Frames (data processing) ; Frames per second ; Generative adversarial networks ; Image enhancement ; Image Processing and Computer Vision ; Image segmentation ; Original Article ; Probability and Statistics in Computer Science ; Public safety ; Spatial data ; Traffic safety ; Unsupervised learning ; Video data</subject><ispartof>Neural computing & applications, 2024-09, Vol.36 (25), p.15799-15813</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1858-269a7aa3a107a15cec2e09d09063c8ba7dcc6d91efb761574d414365feb3eccd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-024-09911-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-024-09911-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Xi, Beihao</creatorcontrib><creatorcontrib>Chen, Qingkui</creatorcontrib><title>Real-time anomaly detection for ‘Remote’ bus stop surveillance using unsupervised conditional generative adversarial networks</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>In response to the imbalance between normal and abnormal samples in existing anomaly detection datasets, as well as the complexity in defining anomalies, we introduce a new dataset named Remote Stop to provide data support for existing algorithms. Concurrently, we propose an unsupervised video anomaly detection method based on conditional generative adversarial networks. Our approach trains the model to learn the distribution of normal video data, enabling it to identify anomalous events. The incorporation of a spatial attention mechanism enhances the model’s performance in detecting abnormal behaviors in video frames while maintaining high processing efficiency. Moreover, unlike other methods that assess the entire image, our approach uses overlapping image blocks to determine anomalies, enhancing the accuracy and robustness of the model in image segmentation. These innovations not only address the issues of scarce samples and high-cost labeling but also provide new perspectives and tools for video anomaly detection in the field of public safety. The effectiveness of the model was validated on the Avenue and Ped2 datasets and applied to our newly created dataset (Remote Stop), achieving an AUC of 84.3% and processing 61 video frames per second. This enables efficient sequential processing of large-scale video data, offering positive contributions to enhancing public road safety by providing early warnings and enabling timely preventive measures.</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Datasets</subject><subject>Frames (data processing)</subject><subject>Frames per second</subject><subject>Generative adversarial networks</subject><subject>Image enhancement</subject><subject>Image Processing and Computer Vision</subject><subject>Image segmentation</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Public safety</subject><subject>Spatial data</subject><subject>Traffic safety</subject><subject>Unsupervised learning</subject><subject>Video data</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFO3DAQhq2qSN0CL8DJEufAOE7i-IgQLUhISAjOlteerEyz9taTLOJG3wJejyep6SJx62mkmf__Z-Zj7EjAiQBQpwTQ1qKCuqlAayGq_gtbiEbKSkLbf2UL0E0Zd438xr4TPQBA0_Xtgv25RTtWU1gjtzGt7fjEPU7oppAiH1Lmb88vt7hOE749v_LlTJymtOE05y2GcbTRIZ8pxBWfI80bzNtA6LlL0Yf3DDvyFUbMdgrbssJvMZPNobQjTo8p_6IDtjfYkfDwo-6z-x8Xd-eX1fXNz6vzs-vKib7tq7rTVlkrrQBlRevQ1Qjag4ZOun5plXeu81rgsFSdaFXjm_J_1w64lOicl_vseJe7yen3jDSZhzTnciAZCbpVWinZFFW9U7mciDIOZpPD2uYnI8C8ozY71KagNv9Qm76Y5M5ERRxXmD-j_-P6CzaPhyY</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Xi, Beihao</creator><creator>Chen, Qingkui</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240901</creationdate><title>Real-time anomaly detection for ‘Remote’ bus stop surveillance using unsupervised conditional generative adversarial networks</title><author>Xi, Beihao ; Chen, Qingkui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1858-269a7aa3a107a15cec2e09d09063c8ba7dcc6d91efb761574d414365feb3eccd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Datasets</topic><topic>Frames (data processing)</topic><topic>Frames per second</topic><topic>Generative adversarial networks</topic><topic>Image enhancement</topic><topic>Image Processing and Computer Vision</topic><topic>Image segmentation</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Public safety</topic><topic>Spatial data</topic><topic>Traffic safety</topic><topic>Unsupervised learning</topic><topic>Video data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xi, Beihao</creatorcontrib><creatorcontrib>Chen, Qingkui</creatorcontrib><collection>CrossRef</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xi, Beihao</au><au>Chen, Qingkui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time anomaly detection for ‘Remote’ bus stop surveillance using unsupervised conditional generative adversarial networks</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>36</volume><issue>25</issue><spage>15799</spage><epage>15813</epage><pages>15799-15813</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>In response to the imbalance between normal and abnormal samples in existing anomaly detection datasets, as well as the complexity in defining anomalies, we introduce a new dataset named Remote Stop to provide data support for existing algorithms. Concurrently, we propose an unsupervised video anomaly detection method based on conditional generative adversarial networks. Our approach trains the model to learn the distribution of normal video data, enabling it to identify anomalous events. The incorporation of a spatial attention mechanism enhances the model’s performance in detecting abnormal behaviors in video frames while maintaining high processing efficiency. Moreover, unlike other methods that assess the entire image, our approach uses overlapping image blocks to determine anomalies, enhancing the accuracy and robustness of the model in image segmentation. These innovations not only address the issues of scarce samples and high-cost labeling but also provide new perspectives and tools for video anomaly detection in the field of public safety. The effectiveness of the model was validated on the Avenue and Ped2 datasets and applied to our newly created dataset (Remote Stop), achieving an AUC of 84.3% and processing 61 video frames per second. This enables efficient sequential processing of large-scale video data, offering positive contributions to enhancing public road safety by providing early warnings and enabling timely preventive measures.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-024-09911-8</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2024-09, Vol.36 (25), p.15799-15813 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_3095797734 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Anomalies Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Datasets Frames (data processing) Frames per second Generative adversarial networks Image enhancement Image Processing and Computer Vision Image segmentation Original Article Probability and Statistics in Computer Science Public safety Spatial data Traffic safety Unsupervised learning Video data |
title | Real-time anomaly detection for ‘Remote’ bus stop surveillance using unsupervised conditional generative adversarial networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A47%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20anomaly%20detection%20for%20%E2%80%98Remote%E2%80%99%20bus%20stop%20surveillance%20using%20unsupervised%20conditional%20generative%20adversarial%20networks&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Xi,%20Beihao&rft.date=2024-09-01&rft.volume=36&rft.issue=25&rft.spage=15799&rft.epage=15813&rft.pages=15799-15813&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-024-09911-8&rft_dat=%3Cproquest_cross%3E3095797734%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095797734&rft_id=info:pmid/&rfr_iscdi=true |