Improvement of Air Purification and Heat Recovery Systems for Industrial Emissions

Industrial facilities, including those specializing in chemical fiber production, are a major source of carbon dioxide, sulfur and nitrogen oxides, and particulate matter emissions. These emissions degrade air quality, affect climate change, and have adverse effects on ecosystems and human health. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fibre chemistry 2024, Vol.55 (6), p.408-412
Hauptverfasser: Karev, A. N., Tyurin, M. P., Sedlyarov, O. I., Borodina, E. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 412
container_issue 6
container_start_page 408
container_title Fibre chemistry
container_volume 55
creator Karev, A. N.
Tyurin, M. P.
Sedlyarov, O. I.
Borodina, E. S.
description Industrial facilities, including those specializing in chemical fiber production, are a major source of carbon dioxide, sulfur and nitrogen oxides, and particulate matter emissions. These emissions degrade air quality, affect climate change, and have adverse effects on ecosystems and human health. This paper presents a mathematical model for calculating a scrubber for purifying and heat recovery of the moist air emitted by various devices of chemical fiber production enterprises.
doi_str_mv 10.1007/s10692-024-10502-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3095599281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095599281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-4294e78e038e41cfc0756d603a8dbc03ffc75ec5c3d56990e1e3d7ae5ccb715a3</originalsourceid><addsrcrecordid>eNp9kEFLwzAUgIMoOKd_wFPAc_SlaZrmOMZ0g4Ey9Ryy9EU61nYmrbB_b2YFb57e5fve432E3HK45wDqIXIodMYgyxkHCRmTZ2TCpRKszLU4JxMALhnInF-Sqxh3AKCV1BOyWTWH0H1hg21PO09ndaAvQ6h97Wxfdy21bUWXaHu6QZe4cKSvx9hjE6nvAl211RD7UNs9XTR1jMmI1-TC233Em985Je-Pi7f5kq2fn1bz2Zq5DKBneaZzVCWCKDHnzjtQsqgKELastg6E905JdNKJShZaA3IUlbIondsqLq2Ykrtxb3rgc8DYm103hDadNAK0lFpnJU9UNlIudDEG9OYQ6saGo-FgTu3M2M6kduannZFJEqMUE9x-YPhb_Y_1DXYmckA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095599281</pqid></control><display><type>article</type><title>Improvement of Air Purification and Heat Recovery Systems for Industrial Emissions</title><source>SpringerNature Journals</source><creator>Karev, A. N. ; Tyurin, M. P. ; Sedlyarov, O. I. ; Borodina, E. S.</creator><creatorcontrib>Karev, A. N. ; Tyurin, M. P. ; Sedlyarov, O. I. ; Borodina, E. S.</creatorcontrib><description>Industrial facilities, including those specializing in chemical fiber production, are a major source of carbon dioxide, sulfur and nitrogen oxides, and particulate matter emissions. These emissions degrade air quality, affect climate change, and have adverse effects on ecosystems and human health. This paper presents a mathematical model for calculating a scrubber for purifying and heat recovery of the moist air emitted by various devices of chemical fiber production enterprises.</description><identifier>ISSN: 0015-0541</identifier><identifier>EISSN: 1573-8493</identifier><identifier>DOI: 10.1007/s10692-024-10502-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Air purification ; Air quality ; Carbon dioxide ; Chemistry ; Chemistry and Materials Science ; Heat recovery ; Machines and Equipment ; Nitrogen oxides ; Organic Chemistry ; Particulate emissions ; Polymer Sciences</subject><ispartof>Fibre chemistry, 2024, Vol.55 (6), p.408-412</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-4294e78e038e41cfc0756d603a8dbc03ffc75ec5c3d56990e1e3d7ae5ccb715a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10692-024-10502-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10692-024-10502-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Karev, A. N.</creatorcontrib><creatorcontrib>Tyurin, M. P.</creatorcontrib><creatorcontrib>Sedlyarov, O. I.</creatorcontrib><creatorcontrib>Borodina, E. S.</creatorcontrib><title>Improvement of Air Purification and Heat Recovery Systems for Industrial Emissions</title><title>Fibre chemistry</title><addtitle>Fibre Chem</addtitle><description>Industrial facilities, including those specializing in chemical fiber production, are a major source of carbon dioxide, sulfur and nitrogen oxides, and particulate matter emissions. These emissions degrade air quality, affect climate change, and have adverse effects on ecosystems and human health. This paper presents a mathematical model for calculating a scrubber for purifying and heat recovery of the moist air emitted by various devices of chemical fiber production enterprises.</description><subject>Air purification</subject><subject>Air quality</subject><subject>Carbon dioxide</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Heat recovery</subject><subject>Machines and Equipment</subject><subject>Nitrogen oxides</subject><subject>Organic Chemistry</subject><subject>Particulate emissions</subject><subject>Polymer Sciences</subject><issn>0015-0541</issn><issn>1573-8493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUgIMoOKd_wFPAc_SlaZrmOMZ0g4Ey9Ryy9EU61nYmrbB_b2YFb57e5fve432E3HK45wDqIXIodMYgyxkHCRmTZ2TCpRKszLU4JxMALhnInF-Sqxh3AKCV1BOyWTWH0H1hg21PO09ndaAvQ6h97Wxfdy21bUWXaHu6QZe4cKSvx9hjE6nvAl211RD7UNs9XTR1jMmI1-TC233Em985Je-Pi7f5kq2fn1bz2Zq5DKBneaZzVCWCKDHnzjtQsqgKELastg6E905JdNKJShZaA3IUlbIondsqLq2Ykrtxb3rgc8DYm103hDadNAK0lFpnJU9UNlIudDEG9OYQ6saGo-FgTu3M2M6kduannZFJEqMUE9x-YPhb_Y_1DXYmckA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Karev, A. N.</creator><creator>Tyurin, M. P.</creator><creator>Sedlyarov, O. I.</creator><creator>Borodina, E. S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>2024</creationdate><title>Improvement of Air Purification and Heat Recovery Systems for Industrial Emissions</title><author>Karev, A. N. ; Tyurin, M. P. ; Sedlyarov, O. I. ; Borodina, E. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-4294e78e038e41cfc0756d603a8dbc03ffc75ec5c3d56990e1e3d7ae5ccb715a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air purification</topic><topic>Air quality</topic><topic>Carbon dioxide</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Heat recovery</topic><topic>Machines and Equipment</topic><topic>Nitrogen oxides</topic><topic>Organic Chemistry</topic><topic>Particulate emissions</topic><topic>Polymer Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karev, A. N.</creatorcontrib><creatorcontrib>Tyurin, M. P.</creatorcontrib><creatorcontrib>Sedlyarov, O. I.</creatorcontrib><creatorcontrib>Borodina, E. S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Fibre chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karev, A. N.</au><au>Tyurin, M. P.</au><au>Sedlyarov, O. I.</au><au>Borodina, E. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of Air Purification and Heat Recovery Systems for Industrial Emissions</atitle><jtitle>Fibre chemistry</jtitle><stitle>Fibre Chem</stitle><date>2024</date><risdate>2024</risdate><volume>55</volume><issue>6</issue><spage>408</spage><epage>412</epage><pages>408-412</pages><issn>0015-0541</issn><eissn>1573-8493</eissn><abstract>Industrial facilities, including those specializing in chemical fiber production, are a major source of carbon dioxide, sulfur and nitrogen oxides, and particulate matter emissions. These emissions degrade air quality, affect climate change, and have adverse effects on ecosystems and human health. This paper presents a mathematical model for calculating a scrubber for purifying and heat recovery of the moist air emitted by various devices of chemical fiber production enterprises.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10692-024-10502-5</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0015-0541
ispartof Fibre chemistry, 2024, Vol.55 (6), p.408-412
issn 0015-0541
1573-8493
language eng
recordid cdi_proquest_journals_3095599281
source SpringerNature Journals
subjects Air purification
Air quality
Carbon dioxide
Chemistry
Chemistry and Materials Science
Heat recovery
Machines and Equipment
Nitrogen oxides
Organic Chemistry
Particulate emissions
Polymer Sciences
title Improvement of Air Purification and Heat Recovery Systems for Industrial Emissions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A11%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20Air%20Purification%20and%20Heat%20Recovery%20Systems%20for%20Industrial%20Emissions&rft.jtitle=Fibre%20chemistry&rft.au=Karev,%20A.%20N.&rft.date=2024&rft.volume=55&rft.issue=6&rft.spage=408&rft.epage=412&rft.pages=408-412&rft.issn=0015-0541&rft.eissn=1573-8493&rft_id=info:doi/10.1007/s10692-024-10502-5&rft_dat=%3Cproquest_cross%3E3095599281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095599281&rft_id=info:pmid/&rfr_iscdi=true