Improvement of Air Purification and Heat Recovery Systems for Industrial Emissions
Industrial facilities, including those specializing in chemical fiber production, are a major source of carbon dioxide, sulfur and nitrogen oxides, and particulate matter emissions. These emissions degrade air quality, affect climate change, and have adverse effects on ecosystems and human health. T...
Gespeichert in:
Veröffentlicht in: | Fibre chemistry 2024, Vol.55 (6), p.408-412 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 412 |
---|---|
container_issue | 6 |
container_start_page | 408 |
container_title | Fibre chemistry |
container_volume | 55 |
creator | Karev, A. N. Tyurin, M. P. Sedlyarov, O. I. Borodina, E. S. |
description | Industrial facilities, including those specializing in chemical fiber production, are a major source of carbon dioxide, sulfur and nitrogen oxides, and particulate matter emissions. These emissions degrade air quality, affect climate change, and have adverse effects on ecosystems and human health. This paper presents a mathematical model for calculating a scrubber for purifying and heat recovery of the moist air emitted by various devices of chemical fiber production enterprises. |
doi_str_mv | 10.1007/s10692-024-10502-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3095599281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095599281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-4294e78e038e41cfc0756d603a8dbc03ffc75ec5c3d56990e1e3d7ae5ccb715a3</originalsourceid><addsrcrecordid>eNp9kEFLwzAUgIMoOKd_wFPAc_SlaZrmOMZ0g4Ey9Ryy9EU61nYmrbB_b2YFb57e5fve432E3HK45wDqIXIodMYgyxkHCRmTZ2TCpRKszLU4JxMALhnInF-Sqxh3AKCV1BOyWTWH0H1hg21PO09ndaAvQ6h97Wxfdy21bUWXaHu6QZe4cKSvx9hjE6nvAl211RD7UNs9XTR1jMmI1-TC233Em985Je-Pi7f5kq2fn1bz2Zq5DKBneaZzVCWCKDHnzjtQsqgKELastg6E905JdNKJShZaA3IUlbIondsqLq2Ykrtxb3rgc8DYm103hDadNAK0lFpnJU9UNlIudDEG9OYQ6saGo-FgTu3M2M6kduannZFJEqMUE9x-YPhb_Y_1DXYmckA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095599281</pqid></control><display><type>article</type><title>Improvement of Air Purification and Heat Recovery Systems for Industrial Emissions</title><source>SpringerNature Journals</source><creator>Karev, A. N. ; Tyurin, M. P. ; Sedlyarov, O. I. ; Borodina, E. S.</creator><creatorcontrib>Karev, A. N. ; Tyurin, M. P. ; Sedlyarov, O. I. ; Borodina, E. S.</creatorcontrib><description>Industrial facilities, including those specializing in chemical fiber production, are a major source of carbon dioxide, sulfur and nitrogen oxides, and particulate matter emissions. These emissions degrade air quality, affect climate change, and have adverse effects on ecosystems and human health. This paper presents a mathematical model for calculating a scrubber for purifying and heat recovery of the moist air emitted by various devices of chemical fiber production enterprises.</description><identifier>ISSN: 0015-0541</identifier><identifier>EISSN: 1573-8493</identifier><identifier>DOI: 10.1007/s10692-024-10502-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Air purification ; Air quality ; Carbon dioxide ; Chemistry ; Chemistry and Materials Science ; Heat recovery ; Machines and Equipment ; Nitrogen oxides ; Organic Chemistry ; Particulate emissions ; Polymer Sciences</subject><ispartof>Fibre chemistry, 2024, Vol.55 (6), p.408-412</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-4294e78e038e41cfc0756d603a8dbc03ffc75ec5c3d56990e1e3d7ae5ccb715a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10692-024-10502-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10692-024-10502-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Karev, A. N.</creatorcontrib><creatorcontrib>Tyurin, M. P.</creatorcontrib><creatorcontrib>Sedlyarov, O. I.</creatorcontrib><creatorcontrib>Borodina, E. S.</creatorcontrib><title>Improvement of Air Purification and Heat Recovery Systems for Industrial Emissions</title><title>Fibre chemistry</title><addtitle>Fibre Chem</addtitle><description>Industrial facilities, including those specializing in chemical fiber production, are a major source of carbon dioxide, sulfur and nitrogen oxides, and particulate matter emissions. These emissions degrade air quality, affect climate change, and have adverse effects on ecosystems and human health. This paper presents a mathematical model for calculating a scrubber for purifying and heat recovery of the moist air emitted by various devices of chemical fiber production enterprises.</description><subject>Air purification</subject><subject>Air quality</subject><subject>Carbon dioxide</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Heat recovery</subject><subject>Machines and Equipment</subject><subject>Nitrogen oxides</subject><subject>Organic Chemistry</subject><subject>Particulate emissions</subject><subject>Polymer Sciences</subject><issn>0015-0541</issn><issn>1573-8493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUgIMoOKd_wFPAc_SlaZrmOMZ0g4Ey9Ryy9EU61nYmrbB_b2YFb57e5fve432E3HK45wDqIXIodMYgyxkHCRmTZ2TCpRKszLU4JxMALhnInF-Sqxh3AKCV1BOyWTWH0H1hg21PO09ndaAvQ6h97Wxfdy21bUWXaHu6QZe4cKSvx9hjE6nvAl211RD7UNs9XTR1jMmI1-TC233Em985Je-Pi7f5kq2fn1bz2Zq5DKBneaZzVCWCKDHnzjtQsqgKELastg6E905JdNKJShZaA3IUlbIondsqLq2Ykrtxb3rgc8DYm103hDadNAK0lFpnJU9UNlIudDEG9OYQ6saGo-FgTu3M2M6kduannZFJEqMUE9x-YPhb_Y_1DXYmckA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Karev, A. N.</creator><creator>Tyurin, M. P.</creator><creator>Sedlyarov, O. I.</creator><creator>Borodina, E. S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>2024</creationdate><title>Improvement of Air Purification and Heat Recovery Systems for Industrial Emissions</title><author>Karev, A. N. ; Tyurin, M. P. ; Sedlyarov, O. I. ; Borodina, E. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-4294e78e038e41cfc0756d603a8dbc03ffc75ec5c3d56990e1e3d7ae5ccb715a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air purification</topic><topic>Air quality</topic><topic>Carbon dioxide</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Heat recovery</topic><topic>Machines and Equipment</topic><topic>Nitrogen oxides</topic><topic>Organic Chemistry</topic><topic>Particulate emissions</topic><topic>Polymer Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karev, A. N.</creatorcontrib><creatorcontrib>Tyurin, M. P.</creatorcontrib><creatorcontrib>Sedlyarov, O. I.</creatorcontrib><creatorcontrib>Borodina, E. S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Fibre chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karev, A. N.</au><au>Tyurin, M. P.</au><au>Sedlyarov, O. I.</au><au>Borodina, E. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of Air Purification and Heat Recovery Systems for Industrial Emissions</atitle><jtitle>Fibre chemistry</jtitle><stitle>Fibre Chem</stitle><date>2024</date><risdate>2024</risdate><volume>55</volume><issue>6</issue><spage>408</spage><epage>412</epage><pages>408-412</pages><issn>0015-0541</issn><eissn>1573-8493</eissn><abstract>Industrial facilities, including those specializing in chemical fiber production, are a major source of carbon dioxide, sulfur and nitrogen oxides, and particulate matter emissions. These emissions degrade air quality, affect climate change, and have adverse effects on ecosystems and human health. This paper presents a mathematical model for calculating a scrubber for purifying and heat recovery of the moist air emitted by various devices of chemical fiber production enterprises.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10692-024-10502-5</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0015-0541 |
ispartof | Fibre chemistry, 2024, Vol.55 (6), p.408-412 |
issn | 0015-0541 1573-8493 |
language | eng |
recordid | cdi_proquest_journals_3095599281 |
source | SpringerNature Journals |
subjects | Air purification Air quality Carbon dioxide Chemistry Chemistry and Materials Science Heat recovery Machines and Equipment Nitrogen oxides Organic Chemistry Particulate emissions Polymer Sciences |
title | Improvement of Air Purification and Heat Recovery Systems for Industrial Emissions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A11%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20Air%20Purification%20and%20Heat%20Recovery%20Systems%20for%20Industrial%20Emissions&rft.jtitle=Fibre%20chemistry&rft.au=Karev,%20A.%20N.&rft.date=2024&rft.volume=55&rft.issue=6&rft.spage=408&rft.epage=412&rft.pages=408-412&rft.issn=0015-0541&rft.eissn=1573-8493&rft_id=info:doi/10.1007/s10692-024-10502-5&rft_dat=%3Cproquest_cross%3E3095599281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095599281&rft_id=info:pmid/&rfr_iscdi=true |