Quantum image edge detection based on Haar wavelet transform

Quantum edge detection offers a promising avenue for real-time image analysis, addressing constraints faced by classical algorithms. However, existing quantum edge detection methods often rely on classical edge detection operators, leading to the loss of intricate edge details, especially in high-re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum information processing 2024-08, Vol.23 (8), Article 302
Hauptverfasser: Wang, Guoling, Zhao, Weiqian, Zou, Ping, Wang, Jindong, Yin, Haibing, Yu, Yafei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Quantum information processing
container_volume 23
creator Wang, Guoling
Zhao, Weiqian
Zou, Ping
Wang, Jindong
Yin, Haibing
Yu, Yafei
description Quantum edge detection offers a promising avenue for real-time image analysis, addressing constraints faced by classical algorithms. However, existing quantum edge detection methods often rely on classical edge detection operators, leading to the loss of intricate edge details, especially in high-resolution images. Here, we present a novel quantum image edge detection algorithm. Our approach involves transforming the image into the wavelet domain through wavelet transform, performing edge detection, and obtaining the edge image via inverse wavelet transform. This innovative method not only mitigates edge information loss but also enhances precision in delineation. Through comprehensive simulations on a classical computing platform, employing peak signal-to-noise ratio (PSNR) and Edge Preservation Index (EPI) evaluations, our proposed scheme demonstrates superior edge information and heightened accuracy. These results underscore the potential of our approach in advancing image processing techniques.
doi_str_mv 10.1007/s11128-024-04513-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3095597567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095597567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-ab68159c5671cb91e16503c5f356826cbccfbfba9b62397063b4f90c203654713</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wNOC5-hMssluwIsUtUJBBD2HJE1KS7tbk6zivze6gp68zLzD-94wj5BzhEsEaK4SIrKWAqsp1AI5bQ_IBEXDKXLODv_oY3KS0gaAoWzlhFw_DabLw65a78zKV35ZxtJn7_K67yprkl9WRcyNidW7efNbn6scTZdCH3en5CiYbfJnP3tKXu5un2dzuni8f5jdLKhjAJkaK1sUygnZoLMKPUoB3InAhWyZdNa5YIM1ykrGVQOS2zooKDCXom6QT8nFmLuP_evgU9abfohdOak5KCFUU6KLi40uF_uUog96H8tX8UMj6K-W9NiSLi3p75Z0WyA-QqmYu5WPv9H_UJ8ep2ij</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095597567</pqid></control><display><type>article</type><title>Quantum image edge detection based on Haar wavelet transform</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Guoling ; Zhao, Weiqian ; Zou, Ping ; Wang, Jindong ; Yin, Haibing ; Yu, Yafei</creator><creatorcontrib>Wang, Guoling ; Zhao, Weiqian ; Zou, Ping ; Wang, Jindong ; Yin, Haibing ; Yu, Yafei</creatorcontrib><description>Quantum edge detection offers a promising avenue for real-time image analysis, addressing constraints faced by classical algorithms. However, existing quantum edge detection methods often rely on classical edge detection operators, leading to the loss of intricate edge details, especially in high-resolution images. Here, we present a novel quantum image edge detection algorithm. Our approach involves transforming the image into the wavelet domain through wavelet transform, performing edge detection, and obtaining the edge image via inverse wavelet transform. This innovative method not only mitigates edge information loss but also enhances precision in delineation. Through comprehensive simulations on a classical computing platform, employing peak signal-to-noise ratio (PSNR) and Edge Preservation Index (EPI) evaluations, our proposed scheme demonstrates superior edge information and heightened accuracy. These results underscore the potential of our approach in advancing image processing techniques.</description><identifier>ISSN: 1573-1332</identifier><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-024-04513-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Data Structures and Information Theory ; Edge detection ; Image analysis ; Image processing ; Image resolution ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum Information Technology ; Quantum Physics ; Real time ; Signal to noise ratio ; Spintronics ; Wavelet analysis ; Wavelet transforms</subject><ispartof>Quantum information processing, 2024-08, Vol.23 (8), Article 302</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-ab68159c5671cb91e16503c5f356826cbccfbfba9b62397063b4f90c203654713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11128-024-04513-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11128-024-04513-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Wang, Guoling</creatorcontrib><creatorcontrib>Zhao, Weiqian</creatorcontrib><creatorcontrib>Zou, Ping</creatorcontrib><creatorcontrib>Wang, Jindong</creatorcontrib><creatorcontrib>Yin, Haibing</creatorcontrib><creatorcontrib>Yu, Yafei</creatorcontrib><title>Quantum image edge detection based on Haar wavelet transform</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>Quantum edge detection offers a promising avenue for real-time image analysis, addressing constraints faced by classical algorithms. However, existing quantum edge detection methods often rely on classical edge detection operators, leading to the loss of intricate edge details, especially in high-resolution images. Here, we present a novel quantum image edge detection algorithm. Our approach involves transforming the image into the wavelet domain through wavelet transform, performing edge detection, and obtaining the edge image via inverse wavelet transform. This innovative method not only mitigates edge information loss but also enhances precision in delineation. Through comprehensive simulations on a classical computing platform, employing peak signal-to-noise ratio (PSNR) and Edge Preservation Index (EPI) evaluations, our proposed scheme demonstrates superior edge information and heightened accuracy. These results underscore the potential of our approach in advancing image processing techniques.</description><subject>Algorithms</subject><subject>Data Structures and Information Theory</subject><subject>Edge detection</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Real time</subject><subject>Signal to noise ratio</subject><subject>Spintronics</subject><subject>Wavelet analysis</subject><subject>Wavelet transforms</subject><issn>1573-1332</issn><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt_wNOC5-hMssluwIsUtUJBBD2HJE1KS7tbk6zivze6gp68zLzD-94wj5BzhEsEaK4SIrKWAqsp1AI5bQ_IBEXDKXLODv_oY3KS0gaAoWzlhFw_DabLw65a78zKV35ZxtJn7_K67yprkl9WRcyNidW7efNbn6scTZdCH3en5CiYbfJnP3tKXu5un2dzuni8f5jdLKhjAJkaK1sUygnZoLMKPUoB3InAhWyZdNa5YIM1ykrGVQOS2zooKDCXom6QT8nFmLuP_evgU9abfohdOak5KCFUU6KLi40uF_uUog96H8tX8UMj6K-W9NiSLi3p75Z0WyA-QqmYu5WPv9H_UJ8ep2ij</recordid><startdate>20240821</startdate><enddate>20240821</enddate><creator>Wang, Guoling</creator><creator>Zhao, Weiqian</creator><creator>Zou, Ping</creator><creator>Wang, Jindong</creator><creator>Yin, Haibing</creator><creator>Yu, Yafei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240821</creationdate><title>Quantum image edge detection based on Haar wavelet transform</title><author>Wang, Guoling ; Zhao, Weiqian ; Zou, Ping ; Wang, Jindong ; Yin, Haibing ; Yu, Yafei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-ab68159c5671cb91e16503c5f356826cbccfbfba9b62397063b4f90c203654713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Data Structures and Information Theory</topic><topic>Edge detection</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Real time</topic><topic>Signal to noise ratio</topic><topic>Spintronics</topic><topic>Wavelet analysis</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Guoling</creatorcontrib><creatorcontrib>Zhao, Weiqian</creatorcontrib><creatorcontrib>Zou, Ping</creatorcontrib><creatorcontrib>Wang, Jindong</creatorcontrib><creatorcontrib>Yin, Haibing</creatorcontrib><creatorcontrib>Yu, Yafei</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Guoling</au><au>Zhao, Weiqian</au><au>Zou, Ping</au><au>Wang, Jindong</au><au>Yin, Haibing</au><au>Yu, Yafei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum image edge detection based on Haar wavelet transform</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2024-08-21</date><risdate>2024</risdate><volume>23</volume><issue>8</issue><artnum>302</artnum><issn>1573-1332</issn><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>Quantum edge detection offers a promising avenue for real-time image analysis, addressing constraints faced by classical algorithms. However, existing quantum edge detection methods often rely on classical edge detection operators, leading to the loss of intricate edge details, especially in high-resolution images. Here, we present a novel quantum image edge detection algorithm. Our approach involves transforming the image into the wavelet domain through wavelet transform, performing edge detection, and obtaining the edge image via inverse wavelet transform. This innovative method not only mitigates edge information loss but also enhances precision in delineation. Through comprehensive simulations on a classical computing platform, employing peak signal-to-noise ratio (PSNR) and Edge Preservation Index (EPI) evaluations, our proposed scheme demonstrates superior edge information and heightened accuracy. These results underscore the potential of our approach in advancing image processing techniques.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-024-04513-8</doi></addata></record>
fulltext fulltext
identifier ISSN: 1573-1332
ispartof Quantum information processing, 2024-08, Vol.23 (8), Article 302
issn 1573-1332
1570-0755
1573-1332
language eng
recordid cdi_proquest_journals_3095597567
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Data Structures and Information Theory
Edge detection
Image analysis
Image processing
Image resolution
Mathematical Physics
Physics
Physics and Astronomy
Quantum Computing
Quantum Information Technology
Quantum Physics
Real time
Signal to noise ratio
Spintronics
Wavelet analysis
Wavelet transforms
title Quantum image edge detection based on Haar wavelet transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T21%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20image%20edge%20detection%20based%20on%20Haar%20wavelet%20transform&rft.jtitle=Quantum%20information%20processing&rft.au=Wang,%20Guoling&rft.date=2024-08-21&rft.volume=23&rft.issue=8&rft.artnum=302&rft.issn=1573-1332&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-024-04513-8&rft_dat=%3Cproquest_cross%3E3095597567%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095597567&rft_id=info:pmid/&rfr_iscdi=true