Quantum image edge detection based on Haar wavelet transform
Quantum edge detection offers a promising avenue for real-time image analysis, addressing constraints faced by classical algorithms. However, existing quantum edge detection methods often rely on classical edge detection operators, leading to the loss of intricate edge details, especially in high-re...
Gespeichert in:
Veröffentlicht in: | Quantum information processing 2024-08, Vol.23 (8), Article 302 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Quantum information processing |
container_volume | 23 |
creator | Wang, Guoling Zhao, Weiqian Zou, Ping Wang, Jindong Yin, Haibing Yu, Yafei |
description | Quantum edge detection offers a promising avenue for real-time image analysis, addressing constraints faced by classical algorithms. However, existing quantum edge detection methods often rely on classical edge detection operators, leading to the loss of intricate edge details, especially in high-resolution images. Here, we present a novel quantum image edge detection algorithm. Our approach involves transforming the image into the wavelet domain through wavelet transform, performing edge detection, and obtaining the edge image via inverse wavelet transform. This innovative method not only mitigates edge information loss but also enhances precision in delineation. Through comprehensive simulations on a classical computing platform, employing peak signal-to-noise ratio (PSNR) and Edge Preservation Index (EPI) evaluations, our proposed scheme demonstrates superior edge information and heightened accuracy. These results underscore the potential of our approach in advancing image processing techniques. |
doi_str_mv | 10.1007/s11128-024-04513-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3095597567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095597567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-ab68159c5671cb91e16503c5f356826cbccfbfba9b62397063b4f90c203654713</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wNOC5-hMssluwIsUtUJBBD2HJE1KS7tbk6zivze6gp68zLzD-94wj5BzhEsEaK4SIrKWAqsp1AI5bQ_IBEXDKXLODv_oY3KS0gaAoWzlhFw_DabLw65a78zKV35ZxtJn7_K67yprkl9WRcyNidW7efNbn6scTZdCH3en5CiYbfJnP3tKXu5un2dzuni8f5jdLKhjAJkaK1sUygnZoLMKPUoB3InAhWyZdNa5YIM1ykrGVQOS2zooKDCXom6QT8nFmLuP_evgU9abfohdOak5KCFUU6KLi40uF_uUog96H8tX8UMj6K-W9NiSLi3p75Z0WyA-QqmYu5WPv9H_UJ8ep2ij</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095597567</pqid></control><display><type>article</type><title>Quantum image edge detection based on Haar wavelet transform</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Guoling ; Zhao, Weiqian ; Zou, Ping ; Wang, Jindong ; Yin, Haibing ; Yu, Yafei</creator><creatorcontrib>Wang, Guoling ; Zhao, Weiqian ; Zou, Ping ; Wang, Jindong ; Yin, Haibing ; Yu, Yafei</creatorcontrib><description>Quantum edge detection offers a promising avenue for real-time image analysis, addressing constraints faced by classical algorithms. However, existing quantum edge detection methods often rely on classical edge detection operators, leading to the loss of intricate edge details, especially in high-resolution images. Here, we present a novel quantum image edge detection algorithm. Our approach involves transforming the image into the wavelet domain through wavelet transform, performing edge detection, and obtaining the edge image via inverse wavelet transform. This innovative method not only mitigates edge information loss but also enhances precision in delineation. Through comprehensive simulations on a classical computing platform, employing peak signal-to-noise ratio (PSNR) and Edge Preservation Index (EPI) evaluations, our proposed scheme demonstrates superior edge information and heightened accuracy. These results underscore the potential of our approach in advancing image processing techniques.</description><identifier>ISSN: 1573-1332</identifier><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-024-04513-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Data Structures and Information Theory ; Edge detection ; Image analysis ; Image processing ; Image resolution ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum Information Technology ; Quantum Physics ; Real time ; Signal to noise ratio ; Spintronics ; Wavelet analysis ; Wavelet transforms</subject><ispartof>Quantum information processing, 2024-08, Vol.23 (8), Article 302</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-ab68159c5671cb91e16503c5f356826cbccfbfba9b62397063b4f90c203654713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11128-024-04513-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11128-024-04513-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Wang, Guoling</creatorcontrib><creatorcontrib>Zhao, Weiqian</creatorcontrib><creatorcontrib>Zou, Ping</creatorcontrib><creatorcontrib>Wang, Jindong</creatorcontrib><creatorcontrib>Yin, Haibing</creatorcontrib><creatorcontrib>Yu, Yafei</creatorcontrib><title>Quantum image edge detection based on Haar wavelet transform</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>Quantum edge detection offers a promising avenue for real-time image analysis, addressing constraints faced by classical algorithms. However, existing quantum edge detection methods often rely on classical edge detection operators, leading to the loss of intricate edge details, especially in high-resolution images. Here, we present a novel quantum image edge detection algorithm. Our approach involves transforming the image into the wavelet domain through wavelet transform, performing edge detection, and obtaining the edge image via inverse wavelet transform. This innovative method not only mitigates edge information loss but also enhances precision in delineation. Through comprehensive simulations on a classical computing platform, employing peak signal-to-noise ratio (PSNR) and Edge Preservation Index (EPI) evaluations, our proposed scheme demonstrates superior edge information and heightened accuracy. These results underscore the potential of our approach in advancing image processing techniques.</description><subject>Algorithms</subject><subject>Data Structures and Information Theory</subject><subject>Edge detection</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Real time</subject><subject>Signal to noise ratio</subject><subject>Spintronics</subject><subject>Wavelet analysis</subject><subject>Wavelet transforms</subject><issn>1573-1332</issn><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt_wNOC5-hMssluwIsUtUJBBD2HJE1KS7tbk6zivze6gp68zLzD-94wj5BzhEsEaK4SIrKWAqsp1AI5bQ_IBEXDKXLODv_oY3KS0gaAoWzlhFw_DabLw65a78zKV35ZxtJn7_K67yprkl9WRcyNidW7efNbn6scTZdCH3en5CiYbfJnP3tKXu5un2dzuni8f5jdLKhjAJkaK1sUygnZoLMKPUoB3InAhWyZdNa5YIM1ykrGVQOS2zooKDCXom6QT8nFmLuP_evgU9abfohdOak5KCFUU6KLi40uF_uUog96H8tX8UMj6K-W9NiSLi3p75Z0WyA-QqmYu5WPv9H_UJ8ep2ij</recordid><startdate>20240821</startdate><enddate>20240821</enddate><creator>Wang, Guoling</creator><creator>Zhao, Weiqian</creator><creator>Zou, Ping</creator><creator>Wang, Jindong</creator><creator>Yin, Haibing</creator><creator>Yu, Yafei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240821</creationdate><title>Quantum image edge detection based on Haar wavelet transform</title><author>Wang, Guoling ; Zhao, Weiqian ; Zou, Ping ; Wang, Jindong ; Yin, Haibing ; Yu, Yafei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-ab68159c5671cb91e16503c5f356826cbccfbfba9b62397063b4f90c203654713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Data Structures and Information Theory</topic><topic>Edge detection</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Real time</topic><topic>Signal to noise ratio</topic><topic>Spintronics</topic><topic>Wavelet analysis</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Guoling</creatorcontrib><creatorcontrib>Zhao, Weiqian</creatorcontrib><creatorcontrib>Zou, Ping</creatorcontrib><creatorcontrib>Wang, Jindong</creatorcontrib><creatorcontrib>Yin, Haibing</creatorcontrib><creatorcontrib>Yu, Yafei</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Guoling</au><au>Zhao, Weiqian</au><au>Zou, Ping</au><au>Wang, Jindong</au><au>Yin, Haibing</au><au>Yu, Yafei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum image edge detection based on Haar wavelet transform</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2024-08-21</date><risdate>2024</risdate><volume>23</volume><issue>8</issue><artnum>302</artnum><issn>1573-1332</issn><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>Quantum edge detection offers a promising avenue for real-time image analysis, addressing constraints faced by classical algorithms. However, existing quantum edge detection methods often rely on classical edge detection operators, leading to the loss of intricate edge details, especially in high-resolution images. Here, we present a novel quantum image edge detection algorithm. Our approach involves transforming the image into the wavelet domain through wavelet transform, performing edge detection, and obtaining the edge image via inverse wavelet transform. This innovative method not only mitigates edge information loss but also enhances precision in delineation. Through comprehensive simulations on a classical computing platform, employing peak signal-to-noise ratio (PSNR) and Edge Preservation Index (EPI) evaluations, our proposed scheme demonstrates superior edge information and heightened accuracy. These results underscore the potential of our approach in advancing image processing techniques.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-024-04513-8</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1573-1332 |
ispartof | Quantum information processing, 2024-08, Vol.23 (8), Article 302 |
issn | 1573-1332 1570-0755 1573-1332 |
language | eng |
recordid | cdi_proquest_journals_3095597567 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Data Structures and Information Theory Edge detection Image analysis Image processing Image resolution Mathematical Physics Physics Physics and Astronomy Quantum Computing Quantum Information Technology Quantum Physics Real time Signal to noise ratio Spintronics Wavelet analysis Wavelet transforms |
title | Quantum image edge detection based on Haar wavelet transform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T21%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20image%20edge%20detection%20based%20on%20Haar%20wavelet%20transform&rft.jtitle=Quantum%20information%20processing&rft.au=Wang,%20Guoling&rft.date=2024-08-21&rft.volume=23&rft.issue=8&rft.artnum=302&rft.issn=1573-1332&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-024-04513-8&rft_dat=%3Cproquest_cross%3E3095597567%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095597567&rft_id=info:pmid/&rfr_iscdi=true |