Magnetic Phase Diagram of Rouaite, Cu\(_2\)(OH)\(_3\)NO\(_3\)
Spinon-magnon mixing was recently reported in botallackite Cu\(_2\)(OH)\(_3\)Br with a uniaxially compressed triangular lattice of Cu\(^{2+}\) quantum spins [Zhang et al., Phys. Rev. Lett. 125, 037204 (2020)]. Its nitrate counterpart rouaite, Cu\(_2\)(OH)\(_3\)NO\(_3\), has a highly analogous struct...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Chakkingal, Aswathi Mannathanath Kulbakov, Anton A Grumbach, Justus Pavlovskii, Nikolai S Stockert, Ulrike Parui, Kaushick K Avdeev, Maxim Kumar, R Niwata, Issei Häußler, Ellen Gumeniuk, Roman J Ross Stewart Tellam, James P Pomjakushin, Vladimir Granovsky, Sergey Doerr, Mathias Hassinger, Elena Zherlitsyn, Sergei Ihara, Yoshihiko Inosov, Dmytro S Peets, Darren C |
description | Spinon-magnon mixing was recently reported in botallackite Cu\(_2\)(OH)\(_3\)Br with a uniaxially compressed triangular lattice of Cu\(^{2+}\) quantum spins [Zhang et al., Phys. Rev. Lett. 125, 037204 (2020)]. Its nitrate counterpart rouaite, Cu\(_2\)(OH)\(_3\)NO\(_3\), has a highly analogous structure and might be expected to exhibit similar physics. To lay a foundation for research on this material, we clarify rouaite's magnetic phase diagram and identify both low-field phases. The low-temperature magnetic state consists of alternating ferro- and antiferromagnetic chains, as in botallackite, but with additional canting, leading to net moments on all chains which rotate from one chain to another to form a 90\(^\circ\) cycloidal pattern. The higher-temperature phase is a helical modulation of this order, wherein the spins rotate from one Cu plane to the next. This extends to zero temperature for fields perpendicular to the chains, leading to a set of low-temperature field-induced phase transitions. Rouaite may offer another platform for spinon-magnon mixing, while our results suggest a delicate balance of interactions and high tunability of the magnetism. |
doi_str_mv | 10.48550/arxiv.2405.18961 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3095288295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095288295</sourcerecordid><originalsourceid>FETCH-proquest_journals_30952882953</originalsourceid><addsrcrecordid>eNqNikELgjAYQEcQJOUP6DboopC2fXM2D52s8FJGdBRkxDSltDaNfn5B_YBO78F7CE0p8QPBOVlI_aqePgSE-1REIR0gCxijnggARsg2piaEQLgEzpmFVjtZNqqrzvhwkUbhdSVLLW-4LfCx7WXVqTmO-8zJIXOdNHE_xjJ3n345QcNCXo2yfxyj2XZzihPvrttHr0yX122vm0_KGYk4CAERZ_9db8N4OrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095288295</pqid></control><display><type>article</type><title>Magnetic Phase Diagram of Rouaite, Cu\(_2\)(OH)\(_3\)NO\(_3\)</title><source>Free E- Journals</source><creator>Chakkingal, Aswathi Mannathanath ; Kulbakov, Anton A ; Grumbach, Justus ; Pavlovskii, Nikolai S ; Stockert, Ulrike ; Parui, Kaushick K ; Avdeev, Maxim ; Kumar, R ; Niwata, Issei ; Häußler, Ellen ; Gumeniuk, Roman ; J Ross Stewart ; Tellam, James P ; Pomjakushin, Vladimir ; Granovsky, Sergey ; Doerr, Mathias ; Hassinger, Elena ; Zherlitsyn, Sergei ; Ihara, Yoshihiko ; Inosov, Dmytro S ; Peets, Darren C</creator><creatorcontrib>Chakkingal, Aswathi Mannathanath ; Kulbakov, Anton A ; Grumbach, Justus ; Pavlovskii, Nikolai S ; Stockert, Ulrike ; Parui, Kaushick K ; Avdeev, Maxim ; Kumar, R ; Niwata, Issei ; Häußler, Ellen ; Gumeniuk, Roman ; J Ross Stewart ; Tellam, James P ; Pomjakushin, Vladimir ; Granovsky, Sergey ; Doerr, Mathias ; Hassinger, Elena ; Zherlitsyn, Sergei ; Ihara, Yoshihiko ; Inosov, Dmytro S ; Peets, Darren C</creatorcontrib><description>Spinon-magnon mixing was recently reported in botallackite Cu\(_2\)(OH)\(_3\)Br with a uniaxially compressed triangular lattice of Cu\(^{2+}\) quantum spins [Zhang et al., Phys. Rev. Lett. 125, 037204 (2020)]. Its nitrate counterpart rouaite, Cu\(_2\)(OH)\(_3\)NO\(_3\), has a highly analogous structure and might be expected to exhibit similar physics. To lay a foundation for research on this material, we clarify rouaite's magnetic phase diagram and identify both low-field phases. The low-temperature magnetic state consists of alternating ferro- and antiferromagnetic chains, as in botallackite, but with additional canting, leading to net moments on all chains which rotate from one chain to another to form a 90\(^\circ\) cycloidal pattern. The higher-temperature phase is a helical modulation of this order, wherein the spins rotate from one Cu plane to the next. This extends to zero temperature for fields perpendicular to the chains, leading to a set of low-temperature field-induced phase transitions. Rouaite may offer another platform for spinon-magnon mixing, while our results suggest a delicate balance of interactions and high tunability of the magnetism.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2405.18961</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Antiferromagnetism ; Low temperature ; Magnons ; Phase diagrams ; Phase transitions ; Temperature distribution</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27904</link.rule.ids></links><search><creatorcontrib>Chakkingal, Aswathi Mannathanath</creatorcontrib><creatorcontrib>Kulbakov, Anton A</creatorcontrib><creatorcontrib>Grumbach, Justus</creatorcontrib><creatorcontrib>Pavlovskii, Nikolai S</creatorcontrib><creatorcontrib>Stockert, Ulrike</creatorcontrib><creatorcontrib>Parui, Kaushick K</creatorcontrib><creatorcontrib>Avdeev, Maxim</creatorcontrib><creatorcontrib>Kumar, R</creatorcontrib><creatorcontrib>Niwata, Issei</creatorcontrib><creatorcontrib>Häußler, Ellen</creatorcontrib><creatorcontrib>Gumeniuk, Roman</creatorcontrib><creatorcontrib>J Ross Stewart</creatorcontrib><creatorcontrib>Tellam, James P</creatorcontrib><creatorcontrib>Pomjakushin, Vladimir</creatorcontrib><creatorcontrib>Granovsky, Sergey</creatorcontrib><creatorcontrib>Doerr, Mathias</creatorcontrib><creatorcontrib>Hassinger, Elena</creatorcontrib><creatorcontrib>Zherlitsyn, Sergei</creatorcontrib><creatorcontrib>Ihara, Yoshihiko</creatorcontrib><creatorcontrib>Inosov, Dmytro S</creatorcontrib><creatorcontrib>Peets, Darren C</creatorcontrib><title>Magnetic Phase Diagram of Rouaite, Cu\(_2\)(OH)\(_3\)NO\(_3\)</title><title>arXiv.org</title><description>Spinon-magnon mixing was recently reported in botallackite Cu\(_2\)(OH)\(_3\)Br with a uniaxially compressed triangular lattice of Cu\(^{2+}\) quantum spins [Zhang et al., Phys. Rev. Lett. 125, 037204 (2020)]. Its nitrate counterpart rouaite, Cu\(_2\)(OH)\(_3\)NO\(_3\), has a highly analogous structure and might be expected to exhibit similar physics. To lay a foundation for research on this material, we clarify rouaite's magnetic phase diagram and identify both low-field phases. The low-temperature magnetic state consists of alternating ferro- and antiferromagnetic chains, as in botallackite, but with additional canting, leading to net moments on all chains which rotate from one chain to another to form a 90\(^\circ\) cycloidal pattern. The higher-temperature phase is a helical modulation of this order, wherein the spins rotate from one Cu plane to the next. This extends to zero temperature for fields perpendicular to the chains, leading to a set of low-temperature field-induced phase transitions. Rouaite may offer another platform for spinon-magnon mixing, while our results suggest a delicate balance of interactions and high tunability of the magnetism.</description><subject>Antiferromagnetism</subject><subject>Low temperature</subject><subject>Magnons</subject><subject>Phase diagrams</subject><subject>Phase transitions</subject><subject>Temperature distribution</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNikELgjAYQEcQJOUP6DboopC2fXM2D52s8FJGdBRkxDSltDaNfn5B_YBO78F7CE0p8QPBOVlI_aqePgSE-1REIR0gCxijnggARsg2piaEQLgEzpmFVjtZNqqrzvhwkUbhdSVLLW-4LfCx7WXVqTmO-8zJIXOdNHE_xjJ3n345QcNCXo2yfxyj2XZzihPvrttHr0yX122vm0_KGYk4CAERZ_9db8N4OrQ</recordid><startdate>20240820</startdate><enddate>20240820</enddate><creator>Chakkingal, Aswathi Mannathanath</creator><creator>Kulbakov, Anton A</creator><creator>Grumbach, Justus</creator><creator>Pavlovskii, Nikolai S</creator><creator>Stockert, Ulrike</creator><creator>Parui, Kaushick K</creator><creator>Avdeev, Maxim</creator><creator>Kumar, R</creator><creator>Niwata, Issei</creator><creator>Häußler, Ellen</creator><creator>Gumeniuk, Roman</creator><creator>J Ross Stewart</creator><creator>Tellam, James P</creator><creator>Pomjakushin, Vladimir</creator><creator>Granovsky, Sergey</creator><creator>Doerr, Mathias</creator><creator>Hassinger, Elena</creator><creator>Zherlitsyn, Sergei</creator><creator>Ihara, Yoshihiko</creator><creator>Inosov, Dmytro S</creator><creator>Peets, Darren C</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240820</creationdate><title>Magnetic Phase Diagram of Rouaite, Cu\(_2\)(OH)\(_3\)NO\(_3\)</title><author>Chakkingal, Aswathi Mannathanath ; Kulbakov, Anton A ; Grumbach, Justus ; Pavlovskii, Nikolai S ; Stockert, Ulrike ; Parui, Kaushick K ; Avdeev, Maxim ; Kumar, R ; Niwata, Issei ; Häußler, Ellen ; Gumeniuk, Roman ; J Ross Stewart ; Tellam, James P ; Pomjakushin, Vladimir ; Granovsky, Sergey ; Doerr, Mathias ; Hassinger, Elena ; Zherlitsyn, Sergei ; Ihara, Yoshihiko ; Inosov, Dmytro S ; Peets, Darren C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30952882953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antiferromagnetism</topic><topic>Low temperature</topic><topic>Magnons</topic><topic>Phase diagrams</topic><topic>Phase transitions</topic><topic>Temperature distribution</topic><toplevel>online_resources</toplevel><creatorcontrib>Chakkingal, Aswathi Mannathanath</creatorcontrib><creatorcontrib>Kulbakov, Anton A</creatorcontrib><creatorcontrib>Grumbach, Justus</creatorcontrib><creatorcontrib>Pavlovskii, Nikolai S</creatorcontrib><creatorcontrib>Stockert, Ulrike</creatorcontrib><creatorcontrib>Parui, Kaushick K</creatorcontrib><creatorcontrib>Avdeev, Maxim</creatorcontrib><creatorcontrib>Kumar, R</creatorcontrib><creatorcontrib>Niwata, Issei</creatorcontrib><creatorcontrib>Häußler, Ellen</creatorcontrib><creatorcontrib>Gumeniuk, Roman</creatorcontrib><creatorcontrib>J Ross Stewart</creatorcontrib><creatorcontrib>Tellam, James P</creatorcontrib><creatorcontrib>Pomjakushin, Vladimir</creatorcontrib><creatorcontrib>Granovsky, Sergey</creatorcontrib><creatorcontrib>Doerr, Mathias</creatorcontrib><creatorcontrib>Hassinger, Elena</creatorcontrib><creatorcontrib>Zherlitsyn, Sergei</creatorcontrib><creatorcontrib>Ihara, Yoshihiko</creatorcontrib><creatorcontrib>Inosov, Dmytro S</creatorcontrib><creatorcontrib>Peets, Darren C</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakkingal, Aswathi Mannathanath</au><au>Kulbakov, Anton A</au><au>Grumbach, Justus</au><au>Pavlovskii, Nikolai S</au><au>Stockert, Ulrike</au><au>Parui, Kaushick K</au><au>Avdeev, Maxim</au><au>Kumar, R</au><au>Niwata, Issei</au><au>Häußler, Ellen</au><au>Gumeniuk, Roman</au><au>J Ross Stewart</au><au>Tellam, James P</au><au>Pomjakushin, Vladimir</au><au>Granovsky, Sergey</au><au>Doerr, Mathias</au><au>Hassinger, Elena</au><au>Zherlitsyn, Sergei</au><au>Ihara, Yoshihiko</au><au>Inosov, Dmytro S</au><au>Peets, Darren C</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Magnetic Phase Diagram of Rouaite, Cu\(_2\)(OH)\(_3\)NO\(_3\)</atitle><jtitle>arXiv.org</jtitle><date>2024-08-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Spinon-magnon mixing was recently reported in botallackite Cu\(_2\)(OH)\(_3\)Br with a uniaxially compressed triangular lattice of Cu\(^{2+}\) quantum spins [Zhang et al., Phys. Rev. Lett. 125, 037204 (2020)]. Its nitrate counterpart rouaite, Cu\(_2\)(OH)\(_3\)NO\(_3\), has a highly analogous structure and might be expected to exhibit similar physics. To lay a foundation for research on this material, we clarify rouaite's magnetic phase diagram and identify both low-field phases. The low-temperature magnetic state consists of alternating ferro- and antiferromagnetic chains, as in botallackite, but with additional canting, leading to net moments on all chains which rotate from one chain to another to form a 90\(^\circ\) cycloidal pattern. The higher-temperature phase is a helical modulation of this order, wherein the spins rotate from one Cu plane to the next. This extends to zero temperature for fields perpendicular to the chains, leading to a set of low-temperature field-induced phase transitions. Rouaite may offer another platform for spinon-magnon mixing, while our results suggest a delicate balance of interactions and high tunability of the magnetism.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2405.18961</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3095288295 |
source | Free E- Journals |
subjects | Antiferromagnetism Low temperature Magnons Phase diagrams Phase transitions Temperature distribution |
title | Magnetic Phase Diagram of Rouaite, Cu\(_2\)(OH)\(_3\)NO\(_3\) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A52%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Magnetic%20Phase%20Diagram%20of%20Rouaite,%20Cu%5C(_2%5C)(OH)%5C(_3%5C)NO%5C(_3%5C)&rft.jtitle=arXiv.org&rft.au=Chakkingal,%20Aswathi%20Mannathanath&rft.date=2024-08-20&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2405.18961&rft_dat=%3Cproquest%3E3095288295%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095288295&rft_id=info:pmid/&rfr_iscdi=true |