Electron-nucleus cross sections from transfer learning
Transfer learning (TL) allows a deep neural network (DNN) trained on one type of data to be adapted for new problems with limited information. We propose to use the TL technique in physics. The DNN learns the physics of one process, and after fine-tuning, it makes predictions for related processes....
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Graczyk, Krzysztof M Kowal, Beata E Ankowski, Artur M Banerjee, Rwik Dharmapal Bonilla, Jose Luis Prasad, Hemant Sobczyk, Jan T |
description | Transfer learning (TL) allows a deep neural network (DNN) trained on one type of data to be adapted for new problems with limited information. We propose to use the TL technique in physics. The DNN learns the physics of one process, and after fine-tuning, it makes predictions for related processes. We consider the DNNs, trained on inclusive electron-carbon scattering data, and show that after fine-tuning, they accurately predict cross sections for electron interactions with nuclear targets ranging from lithium to iron. The method works even when the DNN is fine-tuned on a small dataset. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3095285540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095285540</sourcerecordid><originalsourceid>FETCH-proquest_journals_30952855403</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgWLR_CHgOxE1T61kqPsB7CSGRlrjR3eT_9uADPA3MzEY0YMxJDR3ATrTMi9Ya-jNYaxrRjyn4QhkVVp9CZekpM0te7ZyRZaT8koUccgwkU3CEMz4PYhtd4tD-uBfH2_i43tWb8qcGLtOSK-GaJqMvFgZrO23-u74khzYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095285540</pqid></control><display><type>article</type><title>Electron-nucleus cross sections from transfer learning</title><source>Free E- Journals</source><creator>Graczyk, Krzysztof M ; Kowal, Beata E ; Ankowski, Artur M ; Banerjee, Rwik Dharmapal ; Bonilla, Jose Luis ; Prasad, Hemant ; Sobczyk, Jan T</creator><creatorcontrib>Graczyk, Krzysztof M ; Kowal, Beata E ; Ankowski, Artur M ; Banerjee, Rwik Dharmapal ; Bonilla, Jose Luis ; Prasad, Hemant ; Sobczyk, Jan T</creatorcontrib><description>Transfer learning (TL) allows a deep neural network (DNN) trained on one type of data to be adapted for new problems with limited information. We propose to use the TL technique in physics. The DNN learns the physics of one process, and after fine-tuning, it makes predictions for related processes. We consider the DNNs, trained on inclusive electron-carbon scattering data, and show that after fine-tuning, they accurately predict cross sections for electron interactions with nuclear targets ranging from lithium to iron. The method works even when the DNN is fine-tuned on a small dataset.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Lithium ; Machine learning ; Scattering cross sections</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Graczyk, Krzysztof M</creatorcontrib><creatorcontrib>Kowal, Beata E</creatorcontrib><creatorcontrib>Ankowski, Artur M</creatorcontrib><creatorcontrib>Banerjee, Rwik Dharmapal</creatorcontrib><creatorcontrib>Bonilla, Jose Luis</creatorcontrib><creatorcontrib>Prasad, Hemant</creatorcontrib><creatorcontrib>Sobczyk, Jan T</creatorcontrib><title>Electron-nucleus cross sections from transfer learning</title><title>arXiv.org</title><description>Transfer learning (TL) allows a deep neural network (DNN) trained on one type of data to be adapted for new problems with limited information. We propose to use the TL technique in physics. The DNN learns the physics of one process, and after fine-tuning, it makes predictions for related processes. We consider the DNNs, trained on inclusive electron-carbon scattering data, and show that after fine-tuning, they accurately predict cross sections for electron interactions with nuclear targets ranging from lithium to iron. The method works even when the DNN is fine-tuned on a small dataset.</description><subject>Artificial neural networks</subject><subject>Lithium</subject><subject>Machine learning</subject><subject>Scattering cross sections</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNikEKwjAQAIMgWLR_CHgOxE1T61kqPsB7CSGRlrjR3eT_9uADPA3MzEY0YMxJDR3ATrTMi9Ya-jNYaxrRjyn4QhkVVp9CZekpM0te7ZyRZaT8koUccgwkU3CEMz4PYhtd4tD-uBfH2_i43tWb8qcGLtOSK-GaJqMvFgZrO23-u74khzYQ</recordid><startdate>20240819</startdate><enddate>20240819</enddate><creator>Graczyk, Krzysztof M</creator><creator>Kowal, Beata E</creator><creator>Ankowski, Artur M</creator><creator>Banerjee, Rwik Dharmapal</creator><creator>Bonilla, Jose Luis</creator><creator>Prasad, Hemant</creator><creator>Sobczyk, Jan T</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240819</creationdate><title>Electron-nucleus cross sections from transfer learning</title><author>Graczyk, Krzysztof M ; Kowal, Beata E ; Ankowski, Artur M ; Banerjee, Rwik Dharmapal ; Bonilla, Jose Luis ; Prasad, Hemant ; Sobczyk, Jan T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30952855403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Lithium</topic><topic>Machine learning</topic><topic>Scattering cross sections</topic><toplevel>online_resources</toplevel><creatorcontrib>Graczyk, Krzysztof M</creatorcontrib><creatorcontrib>Kowal, Beata E</creatorcontrib><creatorcontrib>Ankowski, Artur M</creatorcontrib><creatorcontrib>Banerjee, Rwik Dharmapal</creatorcontrib><creatorcontrib>Bonilla, Jose Luis</creatorcontrib><creatorcontrib>Prasad, Hemant</creatorcontrib><creatorcontrib>Sobczyk, Jan T</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graczyk, Krzysztof M</au><au>Kowal, Beata E</au><au>Ankowski, Artur M</au><au>Banerjee, Rwik Dharmapal</au><au>Bonilla, Jose Luis</au><au>Prasad, Hemant</au><au>Sobczyk, Jan T</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Electron-nucleus cross sections from transfer learning</atitle><jtitle>arXiv.org</jtitle><date>2024-08-19</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Transfer learning (TL) allows a deep neural network (DNN) trained on one type of data to be adapted for new problems with limited information. We propose to use the TL technique in physics. The DNN learns the physics of one process, and after fine-tuning, it makes predictions for related processes. We consider the DNNs, trained on inclusive electron-carbon scattering data, and show that after fine-tuning, they accurately predict cross sections for electron interactions with nuclear targets ranging from lithium to iron. The method works even when the DNN is fine-tuned on a small dataset.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3095285540 |
source | Free E- Journals |
subjects | Artificial neural networks Lithium Machine learning Scattering cross sections |
title | Electron-nucleus cross sections from transfer learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A16%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Electron-nucleus%20cross%20sections%20from%20transfer%20learning&rft.jtitle=arXiv.org&rft.au=Graczyk,%20Krzysztof%20M&rft.date=2024-08-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3095285540%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095285540&rft_id=info:pmid/&rfr_iscdi=true |