Designer bubble walls in a holographic Weyl semi-metal with magnetic field

We study bubble walls in the holographic D3/probe D7 system that is dual to strongly coupled quark dynamics. We work to construct holographic descriptions of bubble wall junctions where we can tune the bubble wall height and pressure difference in a theory at zero temperature and density. We study t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Evans, Nick, Fan, Wanxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Evans, Nick
Fan, Wanxiang
description We study bubble walls in the holographic D3/probe D7 system that is dual to strongly coupled quark dynamics. We work to construct holographic descriptions of bubble wall junctions where we can tune the bubble wall height and pressure difference in a theory at zero temperature and density. We study the system in the presence of a background axial vector field b that induces a Weyl semi-metal, massless phase and a background magnetic field B which favours mass generation. We find a first order transition line in the mass-\(B\) plane, at fixed b, ending at a critical point. We present some preliminary solutions of PDEs that describe the motion of one dimensional bubble walls in this theory, with a stationary initial condition - large pressure differences accelerate the wall to the speed of light whilst when the pressure difference is small the wall slumps to an interpolating solution. We also take the first steps to include temperature and see evidence of thermal drag slowing the wall motion. Slump configurations at finite temperature show some signs of a back pressure wave against the wall motion.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3095284218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095284218</sourcerecordid><originalsourceid>FETCH-proquest_journals_30952842183</originalsourceid><addsrcrecordid>eNqNjr0KwjAURoMgWLTvcMG5kCZW6-wP4iw4lrTetim3TU1Sim9vBh_A6QznfPAtWCSkTJN8J8SKxc51nHOxP4gskxG7n9HpZkAL5VSWhDArIgd6AAWtIdNYNba6gid-CBz2OunRK4JZ-xZ6FZY-2FojvTZsWStyGP-4Ztvr5XG6JaM17wmdLzoz2SGoQvJjJsKhNJf_VV-mXDyC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095284218</pqid></control><display><type>article</type><title>Designer bubble walls in a holographic Weyl semi-metal with magnetic field</title><source>Free E- Journals</source><creator>Evans, Nick ; Fan, Wanxiang</creator><creatorcontrib>Evans, Nick ; Fan, Wanxiang</creatorcontrib><description>We study bubble walls in the holographic D3/probe D7 system that is dual to strongly coupled quark dynamics. We work to construct holographic descriptions of bubble wall junctions where we can tune the bubble wall height and pressure difference in a theory at zero temperature and density. We study the system in the presence of a background axial vector field b that induces a Weyl semi-metal, massless phase and a background magnetic field B which favours mass generation. We find a first order transition line in the mass-\(B\) plane, at fixed b, ending at a critical point. We present some preliminary solutions of PDEs that describe the motion of one dimensional bubble walls in this theory, with a stationary initial condition - large pressure differences accelerate the wall to the speed of light whilst when the pressure difference is small the wall slumps to an interpolating solution. We also take the first steps to include temperature and see evidence of thermal drag slowing the wall motion. Slump configurations at finite temperature show some signs of a back pressure wave against the wall motion.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coupled walls ; Critical point ; Elastic waves ; Fields (mathematics) ; Holography ; Magnetic fields</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Evans, Nick</creatorcontrib><creatorcontrib>Fan, Wanxiang</creatorcontrib><title>Designer bubble walls in a holographic Weyl semi-metal with magnetic field</title><title>arXiv.org</title><description>We study bubble walls in the holographic D3/probe D7 system that is dual to strongly coupled quark dynamics. We work to construct holographic descriptions of bubble wall junctions where we can tune the bubble wall height and pressure difference in a theory at zero temperature and density. We study the system in the presence of a background axial vector field b that induces a Weyl semi-metal, massless phase and a background magnetic field B which favours mass generation. We find a first order transition line in the mass-\(B\) plane, at fixed b, ending at a critical point. We present some preliminary solutions of PDEs that describe the motion of one dimensional bubble walls in this theory, with a stationary initial condition - large pressure differences accelerate the wall to the speed of light whilst when the pressure difference is small the wall slumps to an interpolating solution. We also take the first steps to include temperature and see evidence of thermal drag slowing the wall motion. Slump configurations at finite temperature show some signs of a back pressure wave against the wall motion.</description><subject>Coupled walls</subject><subject>Critical point</subject><subject>Elastic waves</subject><subject>Fields (mathematics)</subject><subject>Holography</subject><subject>Magnetic fields</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjr0KwjAURoMgWLTvcMG5kCZW6-wP4iw4lrTetim3TU1Sim9vBh_A6QznfPAtWCSkTJN8J8SKxc51nHOxP4gskxG7n9HpZkAL5VSWhDArIgd6AAWtIdNYNba6gid-CBz2OunRK4JZ-xZ6FZY-2FojvTZsWStyGP-4Ztvr5XG6JaM17wmdLzoz2SGoQvJjJsKhNJf_VV-mXDyC</recordid><startdate>20240820</startdate><enddate>20240820</enddate><creator>Evans, Nick</creator><creator>Fan, Wanxiang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240820</creationdate><title>Designer bubble walls in a holographic Weyl semi-metal with magnetic field</title><author>Evans, Nick ; Fan, Wanxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30952842183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coupled walls</topic><topic>Critical point</topic><topic>Elastic waves</topic><topic>Fields (mathematics)</topic><topic>Holography</topic><topic>Magnetic fields</topic><toplevel>online_resources</toplevel><creatorcontrib>Evans, Nick</creatorcontrib><creatorcontrib>Fan, Wanxiang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Evans, Nick</au><au>Fan, Wanxiang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Designer bubble walls in a holographic Weyl semi-metal with magnetic field</atitle><jtitle>arXiv.org</jtitle><date>2024-08-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We study bubble walls in the holographic D3/probe D7 system that is dual to strongly coupled quark dynamics. We work to construct holographic descriptions of bubble wall junctions where we can tune the bubble wall height and pressure difference in a theory at zero temperature and density. We study the system in the presence of a background axial vector field b that induces a Weyl semi-metal, massless phase and a background magnetic field B which favours mass generation. We find a first order transition line in the mass-\(B\) plane, at fixed b, ending at a critical point. We present some preliminary solutions of PDEs that describe the motion of one dimensional bubble walls in this theory, with a stationary initial condition - large pressure differences accelerate the wall to the speed of light whilst when the pressure difference is small the wall slumps to an interpolating solution. We also take the first steps to include temperature and see evidence of thermal drag slowing the wall motion. Slump configurations at finite temperature show some signs of a back pressure wave against the wall motion.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_3095284218
source Free E- Journals
subjects Coupled walls
Critical point
Elastic waves
Fields (mathematics)
Holography
Magnetic fields
title Designer bubble walls in a holographic Weyl semi-metal with magnetic field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A43%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Designer%20bubble%20walls%20in%20a%20holographic%20Weyl%20semi-metal%20with%20magnetic%20field&rft.jtitle=arXiv.org&rft.au=Evans,%20Nick&rft.date=2024-08-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3095284218%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095284218&rft_id=info:pmid/&rfr_iscdi=true