Feature Selection and 1DCNN-based DDOS Detection in Software-Defined Networking
Software-defined networking (SDN) revolutionizes network management by offering centralized control over complex infrastructures, but it also introduces significant security vulnerabilities. particularly Distributed Denial of Service (DDoS) attacks that significantly interrupt network services. The...
Gespeichert in:
Veröffentlicht in: | Engineering letters 2024-07, Vol.32 (7), p.1529 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 1529 |
container_title | Engineering letters |
container_volume | 32 |
creator | Almi'ani, Noor Anbar, Mohammed Karuppayah, Shankar Sanjalawe, Yousef Alrababah, Hamza Zwayed, Fadi Abu Hasbullah, Iznan H |
description | Software-defined networking (SDN) revolutionizes network management by offering centralized control over complex infrastructures, but it also introduces significant security vulnerabilities. particularly Distributed Denial of Service (DDoS) attacks that significantly interrupt network services. The challenge of efficiently detecting DDoS attacks in SDNs is exacerbated by the computational overhead associated with analyzing numerous network features using conventional Machine Learning (ML) techniques. Addressing this gap, our research proposes a novel Intrusion Detection System (IDS) utilizing a 1D Convolutional Neural Network (1DCNN-IDS) model specifically designed to identify DDoS threats within SDN environments. To refine feature selection and enhance detection accuracy, we applied a hybrid objective function incorporating the Akaike Information Criterion (AIC), F-test (ANOVA), and T-test. The effectiveness of our model was validated using three diverse datasets: InSDN, CICIDS2017, and UNSW-NB15, achieving impressive accuracies of over 98%, 96%, and 92% respectively, alongside high precision, recall, and F1 scores. These findings highlight the substantial potential of incorporating ML and Deep Learning (DL) techniques for effective and efficient intrusion detection in SDNs, highlighting our methodology's contribution towards mitigating DDoS attack risks in these networks. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3095236113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095236113</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-cf900a4bbf732c41fef00d0ed4fe86dd0dcf87dff8026de5c7fafee1d0f96d103</originalsourceid><addsrcrecordid>eNo9jU1Lw0AURQexYKn9DwOuB95kJl9LSawKJVmkQndlkveeRMukJhP69w1YXN0L93DPnVjrTCcKcpvd_3dzfBDbaepbsDY1cQ7xWtQ7cmEeSTZ0pi70g5fOo9RlUVWqdROhLMu6kSWF29x72Qwcrm4kVRL3fkEqCtdh_O7956NYsTtPtL3lRnzsXg7Fm9rXr-_F815dtDZBdZwDONu2nJqos5qJARAILVOWIAJ2nKXInEGUIMVdyo6JNALnCWowG_H093sZh5-ZpnD6GubRL8qTgTyOTLJ4zC9WYE0e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095236113</pqid></control><display><type>article</type><title>Feature Selection and 1DCNN-based DDOS Detection in Software-Defined Networking</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Almi'ani, Noor ; Anbar, Mohammed ; Karuppayah, Shankar ; Sanjalawe, Yousef ; Alrababah, Hamza ; Zwayed, Fadi Abu ; Hasbullah, Iznan H</creator><creatorcontrib>Almi'ani, Noor ; Anbar, Mohammed ; Karuppayah, Shankar ; Sanjalawe, Yousef ; Alrababah, Hamza ; Zwayed, Fadi Abu ; Hasbullah, Iznan H</creatorcontrib><description>Software-defined networking (SDN) revolutionizes network management by offering centralized control over complex infrastructures, but it also introduces significant security vulnerabilities. particularly Distributed Denial of Service (DDoS) attacks that significantly interrupt network services. The challenge of efficiently detecting DDoS attacks in SDNs is exacerbated by the computational overhead associated with analyzing numerous network features using conventional Machine Learning (ML) techniques. Addressing this gap, our research proposes a novel Intrusion Detection System (IDS) utilizing a 1D Convolutional Neural Network (1DCNN-IDS) model specifically designed to identify DDoS threats within SDN environments. To refine feature selection and enhance detection accuracy, we applied a hybrid objective function incorporating the Akaike Information Criterion (AIC), F-test (ANOVA), and T-test. The effectiveness of our model was validated using three diverse datasets: InSDN, CICIDS2017, and UNSW-NB15, achieving impressive accuracies of over 98%, 96%, and 92% respectively, alongside high precision, recall, and F1 scores. These findings highlight the substantial potential of incorporating ML and Deep Learning (DL) techniques for effective and efficient intrusion detection in SDNs, highlighting our methodology's contribution towards mitigating DDoS attack risks in these networks.</description><identifier>ISSN: 1816-093X</identifier><identifier>EISSN: 1816-0948</identifier><language>eng</language><publisher>Hong Kong: International Association of Engineers</publisher><subject>Accuracy ; Artificial neural networks ; Cybersecurity ; Deep learning ; Denial of service attacks ; Effectiveness ; Feature selection ; Intrusion detection systems ; Machine learning ; Software-defined networking ; Variance analysis</subject><ispartof>Engineering letters, 2024-07, Vol.32 (7), p.1529</ispartof><rights>Copyright International Association of Engineers Jul 1, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Almi'ani, Noor</creatorcontrib><creatorcontrib>Anbar, Mohammed</creatorcontrib><creatorcontrib>Karuppayah, Shankar</creatorcontrib><creatorcontrib>Sanjalawe, Yousef</creatorcontrib><creatorcontrib>Alrababah, Hamza</creatorcontrib><creatorcontrib>Zwayed, Fadi Abu</creatorcontrib><creatorcontrib>Hasbullah, Iznan H</creatorcontrib><title>Feature Selection and 1DCNN-based DDOS Detection in Software-Defined Networking</title><title>Engineering letters</title><description>Software-defined networking (SDN) revolutionizes network management by offering centralized control over complex infrastructures, but it also introduces significant security vulnerabilities. particularly Distributed Denial of Service (DDoS) attacks that significantly interrupt network services. The challenge of efficiently detecting DDoS attacks in SDNs is exacerbated by the computational overhead associated with analyzing numerous network features using conventional Machine Learning (ML) techniques. Addressing this gap, our research proposes a novel Intrusion Detection System (IDS) utilizing a 1D Convolutional Neural Network (1DCNN-IDS) model specifically designed to identify DDoS threats within SDN environments. To refine feature selection and enhance detection accuracy, we applied a hybrid objective function incorporating the Akaike Information Criterion (AIC), F-test (ANOVA), and T-test. The effectiveness of our model was validated using three diverse datasets: InSDN, CICIDS2017, and UNSW-NB15, achieving impressive accuracies of over 98%, 96%, and 92% respectively, alongside high precision, recall, and F1 scores. These findings highlight the substantial potential of incorporating ML and Deep Learning (DL) techniques for effective and efficient intrusion detection in SDNs, highlighting our methodology's contribution towards mitigating DDoS attack risks in these networks.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Cybersecurity</subject><subject>Deep learning</subject><subject>Denial of service attacks</subject><subject>Effectiveness</subject><subject>Feature selection</subject><subject>Intrusion detection systems</subject><subject>Machine learning</subject><subject>Software-defined networking</subject><subject>Variance analysis</subject><issn>1816-093X</issn><issn>1816-0948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9jU1Lw0AURQexYKn9DwOuB95kJl9LSawKJVmkQndlkveeRMukJhP69w1YXN0L93DPnVjrTCcKcpvd_3dzfBDbaepbsDY1cQ7xWtQ7cmEeSTZ0pi70g5fOo9RlUVWqdROhLMu6kSWF29x72Qwcrm4kVRL3fkEqCtdh_O7956NYsTtPtL3lRnzsXg7Fm9rXr-_F815dtDZBdZwDONu2nJqos5qJARAILVOWIAJ2nKXInEGUIMVdyo6JNALnCWowG_H093sZh5-ZpnD6GubRL8qTgTyOTLJ4zC9WYE0e</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Almi'ani, Noor</creator><creator>Anbar, Mohammed</creator><creator>Karuppayah, Shankar</creator><creator>Sanjalawe, Yousef</creator><creator>Alrababah, Hamza</creator><creator>Zwayed, Fadi Abu</creator><creator>Hasbullah, Iznan H</creator><general>International Association of Engineers</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240701</creationdate><title>Feature Selection and 1DCNN-based DDOS Detection in Software-Defined Networking</title><author>Almi'ani, Noor ; Anbar, Mohammed ; Karuppayah, Shankar ; Sanjalawe, Yousef ; Alrababah, Hamza ; Zwayed, Fadi Abu ; Hasbullah, Iznan H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-cf900a4bbf732c41fef00d0ed4fe86dd0dcf87dff8026de5c7fafee1d0f96d103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Cybersecurity</topic><topic>Deep learning</topic><topic>Denial of service attacks</topic><topic>Effectiveness</topic><topic>Feature selection</topic><topic>Intrusion detection systems</topic><topic>Machine learning</topic><topic>Software-defined networking</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almi'ani, Noor</creatorcontrib><creatorcontrib>Anbar, Mohammed</creatorcontrib><creatorcontrib>Karuppayah, Shankar</creatorcontrib><creatorcontrib>Sanjalawe, Yousef</creatorcontrib><creatorcontrib>Alrababah, Hamza</creatorcontrib><creatorcontrib>Zwayed, Fadi Abu</creatorcontrib><creatorcontrib>Hasbullah, Iznan H</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Engineering letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almi'ani, Noor</au><au>Anbar, Mohammed</au><au>Karuppayah, Shankar</au><au>Sanjalawe, Yousef</au><au>Alrababah, Hamza</au><au>Zwayed, Fadi Abu</au><au>Hasbullah, Iznan H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature Selection and 1DCNN-based DDOS Detection in Software-Defined Networking</atitle><jtitle>Engineering letters</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>32</volume><issue>7</issue><spage>1529</spage><pages>1529-</pages><issn>1816-093X</issn><eissn>1816-0948</eissn><abstract>Software-defined networking (SDN) revolutionizes network management by offering centralized control over complex infrastructures, but it also introduces significant security vulnerabilities. particularly Distributed Denial of Service (DDoS) attacks that significantly interrupt network services. The challenge of efficiently detecting DDoS attacks in SDNs is exacerbated by the computational overhead associated with analyzing numerous network features using conventional Machine Learning (ML) techniques. Addressing this gap, our research proposes a novel Intrusion Detection System (IDS) utilizing a 1D Convolutional Neural Network (1DCNN-IDS) model specifically designed to identify DDoS threats within SDN environments. To refine feature selection and enhance detection accuracy, we applied a hybrid objective function incorporating the Akaike Information Criterion (AIC), F-test (ANOVA), and T-test. The effectiveness of our model was validated using three diverse datasets: InSDN, CICIDS2017, and UNSW-NB15, achieving impressive accuracies of over 98%, 96%, and 92% respectively, alongside high precision, recall, and F1 scores. These findings highlight the substantial potential of incorporating ML and Deep Learning (DL) techniques for effective and efficient intrusion detection in SDNs, highlighting our methodology's contribution towards mitigating DDoS attack risks in these networks.</abstract><cop>Hong Kong</cop><pub>International Association of Engineers</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1816-093X |
ispartof | Engineering letters, 2024-07, Vol.32 (7), p.1529 |
issn | 1816-093X 1816-0948 |
language | eng |
recordid | cdi_proquest_journals_3095236113 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Artificial neural networks Cybersecurity Deep learning Denial of service attacks Effectiveness Feature selection Intrusion detection systems Machine learning Software-defined networking Variance analysis |
title | Feature Selection and 1DCNN-based DDOS Detection in Software-Defined Networking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T05%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20Selection%20and%201DCNN-based%20DDOS%20Detection%20in%20Software-Defined%20Networking&rft.jtitle=Engineering%20letters&rft.au=Almi'ani,%20Noor&rft.date=2024-07-01&rft.volume=32&rft.issue=7&rft.spage=1529&rft.pages=1529-&rft.issn=1816-093X&rft.eissn=1816-0948&rft_id=info:doi/&rft_dat=%3Cproquest%3E3095236113%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095236113&rft_id=info:pmid/&rfr_iscdi=true |