Feature Selection and 1DCNN-based DDOS Detection in Software-Defined Networking

Software-defined networking (SDN) revolutionizes network management by offering centralized control over complex infrastructures, but it also introduces significant security vulnerabilities. particularly Distributed Denial of Service (DDoS) attacks that significantly interrupt network services. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering letters 2024-07, Vol.32 (7), p.1529
Hauptverfasser: Almi'ani, Noor, Anbar, Mohammed, Karuppayah, Shankar, Sanjalawe, Yousef, Alrababah, Hamza, Zwayed, Fadi Abu, Hasbullah, Iznan H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 1529
container_title Engineering letters
container_volume 32
creator Almi'ani, Noor
Anbar, Mohammed
Karuppayah, Shankar
Sanjalawe, Yousef
Alrababah, Hamza
Zwayed, Fadi Abu
Hasbullah, Iznan H
description Software-defined networking (SDN) revolutionizes network management by offering centralized control over complex infrastructures, but it also introduces significant security vulnerabilities. particularly Distributed Denial of Service (DDoS) attacks that significantly interrupt network services. The challenge of efficiently detecting DDoS attacks in SDNs is exacerbated by the computational overhead associated with analyzing numerous network features using conventional Machine Learning (ML) techniques. Addressing this gap, our research proposes a novel Intrusion Detection System (IDS) utilizing a 1D Convolutional Neural Network (1DCNN-IDS) model specifically designed to identify DDoS threats within SDN environments. To refine feature selection and enhance detection accuracy, we applied a hybrid objective function incorporating the Akaike Information Criterion (AIC), F-test (ANOVA), and T-test. The effectiveness of our model was validated using three diverse datasets: InSDN, CICIDS2017, and UNSW-NB15, achieving impressive accuracies of over 98%, 96%, and 92% respectively, alongside high precision, recall, and F1 scores. These findings highlight the substantial potential of incorporating ML and Deep Learning (DL) techniques for effective and efficient intrusion detection in SDNs, highlighting our methodology's contribution towards mitigating DDoS attack risks in these networks.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3095236113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095236113</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-cf900a4bbf732c41fef00d0ed4fe86dd0dcf87dff8026de5c7fafee1d0f96d103</originalsourceid><addsrcrecordid>eNo9jU1Lw0AURQexYKn9DwOuB95kJl9LSawKJVmkQndlkveeRMukJhP69w1YXN0L93DPnVjrTCcKcpvd_3dzfBDbaepbsDY1cQ7xWtQ7cmEeSTZ0pi70g5fOo9RlUVWqdROhLMu6kSWF29x72Qwcrm4kVRL3fkEqCtdh_O7956NYsTtPtL3lRnzsXg7Fm9rXr-_F815dtDZBdZwDONu2nJqos5qJARAILVOWIAJ2nKXInEGUIMVdyo6JNALnCWowG_H093sZh5-ZpnD6GubRL8qTgTyOTLJ4zC9WYE0e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095236113</pqid></control><display><type>article</type><title>Feature Selection and 1DCNN-based DDOS Detection in Software-Defined Networking</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Almi'ani, Noor ; Anbar, Mohammed ; Karuppayah, Shankar ; Sanjalawe, Yousef ; Alrababah, Hamza ; Zwayed, Fadi Abu ; Hasbullah, Iznan H</creator><creatorcontrib>Almi'ani, Noor ; Anbar, Mohammed ; Karuppayah, Shankar ; Sanjalawe, Yousef ; Alrababah, Hamza ; Zwayed, Fadi Abu ; Hasbullah, Iznan H</creatorcontrib><description>Software-defined networking (SDN) revolutionizes network management by offering centralized control over complex infrastructures, but it also introduces significant security vulnerabilities. particularly Distributed Denial of Service (DDoS) attacks that significantly interrupt network services. The challenge of efficiently detecting DDoS attacks in SDNs is exacerbated by the computational overhead associated with analyzing numerous network features using conventional Machine Learning (ML) techniques. Addressing this gap, our research proposes a novel Intrusion Detection System (IDS) utilizing a 1D Convolutional Neural Network (1DCNN-IDS) model specifically designed to identify DDoS threats within SDN environments. To refine feature selection and enhance detection accuracy, we applied a hybrid objective function incorporating the Akaike Information Criterion (AIC), F-test (ANOVA), and T-test. The effectiveness of our model was validated using three diverse datasets: InSDN, CICIDS2017, and UNSW-NB15, achieving impressive accuracies of over 98%, 96%, and 92% respectively, alongside high precision, recall, and F1 scores. These findings highlight the substantial potential of incorporating ML and Deep Learning (DL) techniques for effective and efficient intrusion detection in SDNs, highlighting our methodology's contribution towards mitigating DDoS attack risks in these networks.</description><identifier>ISSN: 1816-093X</identifier><identifier>EISSN: 1816-0948</identifier><language>eng</language><publisher>Hong Kong: International Association of Engineers</publisher><subject>Accuracy ; Artificial neural networks ; Cybersecurity ; Deep learning ; Denial of service attacks ; Effectiveness ; Feature selection ; Intrusion detection systems ; Machine learning ; Software-defined networking ; Variance analysis</subject><ispartof>Engineering letters, 2024-07, Vol.32 (7), p.1529</ispartof><rights>Copyright International Association of Engineers Jul 1, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Almi'ani, Noor</creatorcontrib><creatorcontrib>Anbar, Mohammed</creatorcontrib><creatorcontrib>Karuppayah, Shankar</creatorcontrib><creatorcontrib>Sanjalawe, Yousef</creatorcontrib><creatorcontrib>Alrababah, Hamza</creatorcontrib><creatorcontrib>Zwayed, Fadi Abu</creatorcontrib><creatorcontrib>Hasbullah, Iznan H</creatorcontrib><title>Feature Selection and 1DCNN-based DDOS Detection in Software-Defined Networking</title><title>Engineering letters</title><description>Software-defined networking (SDN) revolutionizes network management by offering centralized control over complex infrastructures, but it also introduces significant security vulnerabilities. particularly Distributed Denial of Service (DDoS) attacks that significantly interrupt network services. The challenge of efficiently detecting DDoS attacks in SDNs is exacerbated by the computational overhead associated with analyzing numerous network features using conventional Machine Learning (ML) techniques. Addressing this gap, our research proposes a novel Intrusion Detection System (IDS) utilizing a 1D Convolutional Neural Network (1DCNN-IDS) model specifically designed to identify DDoS threats within SDN environments. To refine feature selection and enhance detection accuracy, we applied a hybrid objective function incorporating the Akaike Information Criterion (AIC), F-test (ANOVA), and T-test. The effectiveness of our model was validated using three diverse datasets: InSDN, CICIDS2017, and UNSW-NB15, achieving impressive accuracies of over 98%, 96%, and 92% respectively, alongside high precision, recall, and F1 scores. These findings highlight the substantial potential of incorporating ML and Deep Learning (DL) techniques for effective and efficient intrusion detection in SDNs, highlighting our methodology's contribution towards mitigating DDoS attack risks in these networks.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Cybersecurity</subject><subject>Deep learning</subject><subject>Denial of service attacks</subject><subject>Effectiveness</subject><subject>Feature selection</subject><subject>Intrusion detection systems</subject><subject>Machine learning</subject><subject>Software-defined networking</subject><subject>Variance analysis</subject><issn>1816-093X</issn><issn>1816-0948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9jU1Lw0AURQexYKn9DwOuB95kJl9LSawKJVmkQndlkveeRMukJhP69w1YXN0L93DPnVjrTCcKcpvd_3dzfBDbaepbsDY1cQ7xWtQ7cmEeSTZ0pi70g5fOo9RlUVWqdROhLMu6kSWF29x72Qwcrm4kVRL3fkEqCtdh_O7956NYsTtPtL3lRnzsXg7Fm9rXr-_F815dtDZBdZwDONu2nJqos5qJARAILVOWIAJ2nKXInEGUIMVdyo6JNALnCWowG_H093sZh5-ZpnD6GubRL8qTgTyOTLJ4zC9WYE0e</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Almi'ani, Noor</creator><creator>Anbar, Mohammed</creator><creator>Karuppayah, Shankar</creator><creator>Sanjalawe, Yousef</creator><creator>Alrababah, Hamza</creator><creator>Zwayed, Fadi Abu</creator><creator>Hasbullah, Iznan H</creator><general>International Association of Engineers</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240701</creationdate><title>Feature Selection and 1DCNN-based DDOS Detection in Software-Defined Networking</title><author>Almi'ani, Noor ; Anbar, Mohammed ; Karuppayah, Shankar ; Sanjalawe, Yousef ; Alrababah, Hamza ; Zwayed, Fadi Abu ; Hasbullah, Iznan H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-cf900a4bbf732c41fef00d0ed4fe86dd0dcf87dff8026de5c7fafee1d0f96d103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Cybersecurity</topic><topic>Deep learning</topic><topic>Denial of service attacks</topic><topic>Effectiveness</topic><topic>Feature selection</topic><topic>Intrusion detection systems</topic><topic>Machine learning</topic><topic>Software-defined networking</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almi'ani, Noor</creatorcontrib><creatorcontrib>Anbar, Mohammed</creatorcontrib><creatorcontrib>Karuppayah, Shankar</creatorcontrib><creatorcontrib>Sanjalawe, Yousef</creatorcontrib><creatorcontrib>Alrababah, Hamza</creatorcontrib><creatorcontrib>Zwayed, Fadi Abu</creatorcontrib><creatorcontrib>Hasbullah, Iznan H</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Engineering letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almi'ani, Noor</au><au>Anbar, Mohammed</au><au>Karuppayah, Shankar</au><au>Sanjalawe, Yousef</au><au>Alrababah, Hamza</au><au>Zwayed, Fadi Abu</au><au>Hasbullah, Iznan H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature Selection and 1DCNN-based DDOS Detection in Software-Defined Networking</atitle><jtitle>Engineering letters</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>32</volume><issue>7</issue><spage>1529</spage><pages>1529-</pages><issn>1816-093X</issn><eissn>1816-0948</eissn><abstract>Software-defined networking (SDN) revolutionizes network management by offering centralized control over complex infrastructures, but it also introduces significant security vulnerabilities. particularly Distributed Denial of Service (DDoS) attacks that significantly interrupt network services. The challenge of efficiently detecting DDoS attacks in SDNs is exacerbated by the computational overhead associated with analyzing numerous network features using conventional Machine Learning (ML) techniques. Addressing this gap, our research proposes a novel Intrusion Detection System (IDS) utilizing a 1D Convolutional Neural Network (1DCNN-IDS) model specifically designed to identify DDoS threats within SDN environments. To refine feature selection and enhance detection accuracy, we applied a hybrid objective function incorporating the Akaike Information Criterion (AIC), F-test (ANOVA), and T-test. The effectiveness of our model was validated using three diverse datasets: InSDN, CICIDS2017, and UNSW-NB15, achieving impressive accuracies of over 98%, 96%, and 92% respectively, alongside high precision, recall, and F1 scores. These findings highlight the substantial potential of incorporating ML and Deep Learning (DL) techniques for effective and efficient intrusion detection in SDNs, highlighting our methodology's contribution towards mitigating DDoS attack risks in these networks.</abstract><cop>Hong Kong</cop><pub>International Association of Engineers</pub></addata></record>
fulltext fulltext
identifier ISSN: 1816-093X
ispartof Engineering letters, 2024-07, Vol.32 (7), p.1529
issn 1816-093X
1816-0948
language eng
recordid cdi_proquest_journals_3095236113
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Artificial neural networks
Cybersecurity
Deep learning
Denial of service attacks
Effectiveness
Feature selection
Intrusion detection systems
Machine learning
Software-defined networking
Variance analysis
title Feature Selection and 1DCNN-based DDOS Detection in Software-Defined Networking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T05%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20Selection%20and%201DCNN-based%20DDOS%20Detection%20in%20Software-Defined%20Networking&rft.jtitle=Engineering%20letters&rft.au=Almi'ani,%20Noor&rft.date=2024-07-01&rft.volume=32&rft.issue=7&rft.spage=1529&rft.pages=1529-&rft.issn=1816-093X&rft.eissn=1816-0948&rft_id=info:doi/&rft_dat=%3Cproquest%3E3095236113%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095236113&rft_id=info:pmid/&rfr_iscdi=true