Parametric dataset-based formulation of rated torque of a brushless DC motor for electric vehicle
This study aims to determine the mechanical response of a brushless DC motor (BLDC) used in two-wheeled electric vehicles by analyzing torque values through finite element analysis. The motor features a three-phase stator structure and four permanent magnets on its rotor. The study investigates the...
Gespeichert in:
Veröffentlicht in: | Electrical engineering 2024, Vol.106 (4), p.4327-4337 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4337 |
---|---|
container_issue | 4 |
container_start_page | 4327 |
container_title | Electrical engineering |
container_volume | 106 |
creator | Yilmaz, Ahmet Simsek, Cemaleddin Balci, Selami |
description | This study aims to determine the mechanical response of a brushless DC motor (BLDC) used in two-wheeled electric vehicles by analyzing torque values through finite element analysis. The motor features a three-phase stator structure and four permanent magnets on its rotor. The study investigates the relationship between torque, pulse degree, excitation voltage, and stator current using RMxprt software. A parametric dataset consisting of 600 data points is generated to model the BLDC motor system. Genetic programming (GP) is employed to establish a formula that correlates the motor’s output torque with the input variables. The resulting simplified formula, created with GP, achieves a mean absolute percentage error (MAPE) of 0.085 and an
R
-squared (
R
2
) value of 0.989, indicating high accuracy in torque prediction based on simulation parameters. This research provides a torque formulation based on parametric finite element analysis, offering potential benefits for electric bicycles and potentially eliminating the need for certain sensors. Thus, before experimental studies in the process of determining BLDC motor torque behavior, a dataset approach based on FEA parametric simulation studies and a GP formulation developed based on the dataset obtained from parametric simulations were proposed. |
doi_str_mv | 10.1007/s00202-023-02212-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3095151274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095151274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-8de7f1638c6ba7be88946aa488181bb6101b3f64cb87bf80e74fbe03df78ebe03</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcIrEObB-NHaOqDylSnCAs2Una5oqrYvtIPH3OA0SNw5e745nZq0h5JLCNQWQNxGAASuB8XwYZaU6IjMqeIaEksdkBrVQpawZPSVnMW4AgC9qMSPm1QSzxRS6pmhNMhFTaXNtC-fDduhN6vyu8K4IJmUw-fA54DibwoYhrnuMsbhbFlufn0ZNgT02B7svXHdNj-fkxJk-4sXvPSfvD_dvy6dy9fL4vLxdlQ2TkErVonS04qqprJEWlapFZYxQiipqbUWBWu4q0VglrVOAUjiLwFsnFY7NnFxNvvvg8x9j0hs_hF1eqTnUC7qgTIrMYhOrCT7GgE7vQ7c14VtT0GOUeopS5yj1IUqtsohPopjJuw8Mf9b_qH4AedB3jA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095151274</pqid></control><display><type>article</type><title>Parametric dataset-based formulation of rated torque of a brushless DC motor for electric vehicle</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yilmaz, Ahmet ; Simsek, Cemaleddin ; Balci, Selami</creator><creatorcontrib>Yilmaz, Ahmet ; Simsek, Cemaleddin ; Balci, Selami</creatorcontrib><description>This study aims to determine the mechanical response of a brushless DC motor (BLDC) used in two-wheeled electric vehicles by analyzing torque values through finite element analysis. The motor features a three-phase stator structure and four permanent magnets on its rotor. The study investigates the relationship between torque, pulse degree, excitation voltage, and stator current using RMxprt software. A parametric dataset consisting of 600 data points is generated to model the BLDC motor system. Genetic programming (GP) is employed to establish a formula that correlates the motor’s output torque with the input variables. The resulting simplified formula, created with GP, achieves a mean absolute percentage error (MAPE) of 0.085 and an
R
-squared (
R
2
) value of 0.989, indicating high accuracy in torque prediction based on simulation parameters. This research provides a torque formulation based on parametric finite element analysis, offering potential benefits for electric bicycles and potentially eliminating the need for certain sensors. Thus, before experimental studies in the process of determining BLDC motor torque behavior, a dataset approach based on FEA parametric simulation studies and a GP formulation developed based on the dataset obtained from parametric simulations were proposed.</description><identifier>ISSN: 0948-7921</identifier><identifier>EISSN: 1432-0487</identifier><identifier>DOI: 10.1007/s00202-023-02212-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Brushless motors ; D C motors ; Data points ; Datasets ; Economics and Management ; Electric bicycles ; Electric motors ; Electric vehicles ; Electrical Engineering ; Electrical Machines and Networks ; Energy Policy ; Engineering ; Finite element analysis ; Finite element method ; Genetic algorithms ; Mechanical analysis ; Motor stators ; Original Paper ; Permanent magnets ; Power Electronics ; Stators ; Torque</subject><ispartof>Electrical engineering, 2024, Vol.106 (4), p.4327-4337</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-8de7f1638c6ba7be88946aa488181bb6101b3f64cb87bf80e74fbe03df78ebe03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00202-023-02212-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00202-023-02212-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yilmaz, Ahmet</creatorcontrib><creatorcontrib>Simsek, Cemaleddin</creatorcontrib><creatorcontrib>Balci, Selami</creatorcontrib><title>Parametric dataset-based formulation of rated torque of a brushless DC motor for electric vehicle</title><title>Electrical engineering</title><addtitle>Electr Eng</addtitle><description>This study aims to determine the mechanical response of a brushless DC motor (BLDC) used in two-wheeled electric vehicles by analyzing torque values through finite element analysis. The motor features a three-phase stator structure and four permanent magnets on its rotor. The study investigates the relationship between torque, pulse degree, excitation voltage, and stator current using RMxprt software. A parametric dataset consisting of 600 data points is generated to model the BLDC motor system. Genetic programming (GP) is employed to establish a formula that correlates the motor’s output torque with the input variables. The resulting simplified formula, created with GP, achieves a mean absolute percentage error (MAPE) of 0.085 and an
R
-squared (
R
2
) value of 0.989, indicating high accuracy in torque prediction based on simulation parameters. This research provides a torque formulation based on parametric finite element analysis, offering potential benefits for electric bicycles and potentially eliminating the need for certain sensors. Thus, before experimental studies in the process of determining BLDC motor torque behavior, a dataset approach based on FEA parametric simulation studies and a GP formulation developed based on the dataset obtained from parametric simulations were proposed.</description><subject>Brushless motors</subject><subject>D C motors</subject><subject>Data points</subject><subject>Datasets</subject><subject>Economics and Management</subject><subject>Electric bicycles</subject><subject>Electric motors</subject><subject>Electric vehicles</subject><subject>Electrical Engineering</subject><subject>Electrical Machines and Networks</subject><subject>Energy Policy</subject><subject>Engineering</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Genetic algorithms</subject><subject>Mechanical analysis</subject><subject>Motor stators</subject><subject>Original Paper</subject><subject>Permanent magnets</subject><subject>Power Electronics</subject><subject>Stators</subject><subject>Torque</subject><issn>0948-7921</issn><issn>1432-0487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcIrEObB-NHaOqDylSnCAs2Una5oqrYvtIPH3OA0SNw5e745nZq0h5JLCNQWQNxGAASuB8XwYZaU6IjMqeIaEksdkBrVQpawZPSVnMW4AgC9qMSPm1QSzxRS6pmhNMhFTaXNtC-fDduhN6vyu8K4IJmUw-fA54DibwoYhrnuMsbhbFlufn0ZNgT02B7svXHdNj-fkxJk-4sXvPSfvD_dvy6dy9fL4vLxdlQ2TkErVonS04qqprJEWlapFZYxQiipqbUWBWu4q0VglrVOAUjiLwFsnFY7NnFxNvvvg8x9j0hs_hF1eqTnUC7qgTIrMYhOrCT7GgE7vQ7c14VtT0GOUeopS5yj1IUqtsohPopjJuw8Mf9b_qH4AedB3jA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yilmaz, Ahmet</creator><creator>Simsek, Cemaleddin</creator><creator>Balci, Selami</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Parametric dataset-based formulation of rated torque of a brushless DC motor for electric vehicle</title><author>Yilmaz, Ahmet ; Simsek, Cemaleddin ; Balci, Selami</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-8de7f1638c6ba7be88946aa488181bb6101b3f64cb87bf80e74fbe03df78ebe03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brushless motors</topic><topic>D C motors</topic><topic>Data points</topic><topic>Datasets</topic><topic>Economics and Management</topic><topic>Electric bicycles</topic><topic>Electric motors</topic><topic>Electric vehicles</topic><topic>Electrical Engineering</topic><topic>Electrical Machines and Networks</topic><topic>Energy Policy</topic><topic>Engineering</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Genetic algorithms</topic><topic>Mechanical analysis</topic><topic>Motor stators</topic><topic>Original Paper</topic><topic>Permanent magnets</topic><topic>Power Electronics</topic><topic>Stators</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yilmaz, Ahmet</creatorcontrib><creatorcontrib>Simsek, Cemaleddin</creatorcontrib><creatorcontrib>Balci, Selami</creatorcontrib><collection>CrossRef</collection><jtitle>Electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yilmaz, Ahmet</au><au>Simsek, Cemaleddin</au><au>Balci, Selami</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametric dataset-based formulation of rated torque of a brushless DC motor for electric vehicle</atitle><jtitle>Electrical engineering</jtitle><stitle>Electr Eng</stitle><date>2024</date><risdate>2024</risdate><volume>106</volume><issue>4</issue><spage>4327</spage><epage>4337</epage><pages>4327-4337</pages><issn>0948-7921</issn><eissn>1432-0487</eissn><abstract>This study aims to determine the mechanical response of a brushless DC motor (BLDC) used in two-wheeled electric vehicles by analyzing torque values through finite element analysis. The motor features a three-phase stator structure and four permanent magnets on its rotor. The study investigates the relationship between torque, pulse degree, excitation voltage, and stator current using RMxprt software. A parametric dataset consisting of 600 data points is generated to model the BLDC motor system. Genetic programming (GP) is employed to establish a formula that correlates the motor’s output torque with the input variables. The resulting simplified formula, created with GP, achieves a mean absolute percentage error (MAPE) of 0.085 and an
R
-squared (
R
2
) value of 0.989, indicating high accuracy in torque prediction based on simulation parameters. This research provides a torque formulation based on parametric finite element analysis, offering potential benefits for electric bicycles and potentially eliminating the need for certain sensors. Thus, before experimental studies in the process of determining BLDC motor torque behavior, a dataset approach based on FEA parametric simulation studies and a GP formulation developed based on the dataset obtained from parametric simulations were proposed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00202-023-02212-8</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0948-7921 |
ispartof | Electrical engineering, 2024, Vol.106 (4), p.4327-4337 |
issn | 0948-7921 1432-0487 |
language | eng |
recordid | cdi_proquest_journals_3095151274 |
source | SpringerLink Journals - AutoHoldings |
subjects | Brushless motors D C motors Data points Datasets Economics and Management Electric bicycles Electric motors Electric vehicles Electrical Engineering Electrical Machines and Networks Energy Policy Engineering Finite element analysis Finite element method Genetic algorithms Mechanical analysis Motor stators Original Paper Permanent magnets Power Electronics Stators Torque |
title | Parametric dataset-based formulation of rated torque of a brushless DC motor for electric vehicle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A09%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametric%20dataset-based%20formulation%20of%20rated%20torque%20of%20a%20brushless%20DC%20motor%20for%20electric%20vehicle&rft.jtitle=Electrical%20engineering&rft.au=Yilmaz,%20Ahmet&rft.date=2024&rft.volume=106&rft.issue=4&rft.spage=4327&rft.epage=4337&rft.pages=4327-4337&rft.issn=0948-7921&rft.eissn=1432-0487&rft_id=info:doi/10.1007/s00202-023-02212-8&rft_dat=%3Cproquest_cross%3E3095151274%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095151274&rft_id=info:pmid/&rfr_iscdi=true |