Parametric dataset-based formulation of rated torque of a brushless DC motor for electric vehicle

This study aims to determine the mechanical response of a brushless DC motor (BLDC) used in two-wheeled electric vehicles by analyzing torque values through finite element analysis. The motor features a three-phase stator structure and four permanent magnets on its rotor. The study investigates the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrical engineering 2024, Vol.106 (4), p.4327-4337
Hauptverfasser: Yilmaz, Ahmet, Simsek, Cemaleddin, Balci, Selami
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4337
container_issue 4
container_start_page 4327
container_title Electrical engineering
container_volume 106
creator Yilmaz, Ahmet
Simsek, Cemaleddin
Balci, Selami
description This study aims to determine the mechanical response of a brushless DC motor (BLDC) used in two-wheeled electric vehicles by analyzing torque values through finite element analysis. The motor features a three-phase stator structure and four permanent magnets on its rotor. The study investigates the relationship between torque, pulse degree, excitation voltage, and stator current using RMxprt software. A parametric dataset consisting of 600 data points is generated to model the BLDC motor system. Genetic programming (GP) is employed to establish a formula that correlates the motor’s output torque with the input variables. The resulting simplified formula, created with GP, achieves a mean absolute percentage error (MAPE) of 0.085 and an R -squared ( R 2 ) value of 0.989, indicating high accuracy in torque prediction based on simulation parameters. This research provides a torque formulation based on parametric finite element analysis, offering potential benefits for electric bicycles and potentially eliminating the need for certain sensors. Thus, before experimental studies in the process of determining BLDC motor torque behavior, a dataset approach based on FEA parametric simulation studies and a GP formulation developed based on the dataset obtained from parametric simulations were proposed.
doi_str_mv 10.1007/s00202-023-02212-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3095151274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095151274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-8de7f1638c6ba7be88946aa488181bb6101b3f64cb87bf80e74fbe03df78ebe03</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcIrEObB-NHaOqDylSnCAs2Una5oqrYvtIPH3OA0SNw5e745nZq0h5JLCNQWQNxGAASuB8XwYZaU6IjMqeIaEksdkBrVQpawZPSVnMW4AgC9qMSPm1QSzxRS6pmhNMhFTaXNtC-fDduhN6vyu8K4IJmUw-fA54DibwoYhrnuMsbhbFlufn0ZNgT02B7svXHdNj-fkxJk-4sXvPSfvD_dvy6dy9fL4vLxdlQ2TkErVonS04qqprJEWlapFZYxQiipqbUWBWu4q0VglrVOAUjiLwFsnFY7NnFxNvvvg8x9j0hs_hF1eqTnUC7qgTIrMYhOrCT7GgE7vQ7c14VtT0GOUeopS5yj1IUqtsohPopjJuw8Mf9b_qH4AedB3jA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095151274</pqid></control><display><type>article</type><title>Parametric dataset-based formulation of rated torque of a brushless DC motor for electric vehicle</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yilmaz, Ahmet ; Simsek, Cemaleddin ; Balci, Selami</creator><creatorcontrib>Yilmaz, Ahmet ; Simsek, Cemaleddin ; Balci, Selami</creatorcontrib><description>This study aims to determine the mechanical response of a brushless DC motor (BLDC) used in two-wheeled electric vehicles by analyzing torque values through finite element analysis. The motor features a three-phase stator structure and four permanent magnets on its rotor. The study investigates the relationship between torque, pulse degree, excitation voltage, and stator current using RMxprt software. A parametric dataset consisting of 600 data points is generated to model the BLDC motor system. Genetic programming (GP) is employed to establish a formula that correlates the motor’s output torque with the input variables. The resulting simplified formula, created with GP, achieves a mean absolute percentage error (MAPE) of 0.085 and an R -squared ( R 2 ) value of 0.989, indicating high accuracy in torque prediction based on simulation parameters. This research provides a torque formulation based on parametric finite element analysis, offering potential benefits for electric bicycles and potentially eliminating the need for certain sensors. Thus, before experimental studies in the process of determining BLDC motor torque behavior, a dataset approach based on FEA parametric simulation studies and a GP formulation developed based on the dataset obtained from parametric simulations were proposed.</description><identifier>ISSN: 0948-7921</identifier><identifier>EISSN: 1432-0487</identifier><identifier>DOI: 10.1007/s00202-023-02212-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Brushless motors ; D C motors ; Data points ; Datasets ; Economics and Management ; Electric bicycles ; Electric motors ; Electric vehicles ; Electrical Engineering ; Electrical Machines and Networks ; Energy Policy ; Engineering ; Finite element analysis ; Finite element method ; Genetic algorithms ; Mechanical analysis ; Motor stators ; Original Paper ; Permanent magnets ; Power Electronics ; Stators ; Torque</subject><ispartof>Electrical engineering, 2024, Vol.106 (4), p.4327-4337</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-8de7f1638c6ba7be88946aa488181bb6101b3f64cb87bf80e74fbe03df78ebe03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00202-023-02212-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00202-023-02212-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yilmaz, Ahmet</creatorcontrib><creatorcontrib>Simsek, Cemaleddin</creatorcontrib><creatorcontrib>Balci, Selami</creatorcontrib><title>Parametric dataset-based formulation of rated torque of a brushless DC motor for electric vehicle</title><title>Electrical engineering</title><addtitle>Electr Eng</addtitle><description>This study aims to determine the mechanical response of a brushless DC motor (BLDC) used in two-wheeled electric vehicles by analyzing torque values through finite element analysis. The motor features a three-phase stator structure and four permanent magnets on its rotor. The study investigates the relationship between torque, pulse degree, excitation voltage, and stator current using RMxprt software. A parametric dataset consisting of 600 data points is generated to model the BLDC motor system. Genetic programming (GP) is employed to establish a formula that correlates the motor’s output torque with the input variables. The resulting simplified formula, created with GP, achieves a mean absolute percentage error (MAPE) of 0.085 and an R -squared ( R 2 ) value of 0.989, indicating high accuracy in torque prediction based on simulation parameters. This research provides a torque formulation based on parametric finite element analysis, offering potential benefits for electric bicycles and potentially eliminating the need for certain sensors. Thus, before experimental studies in the process of determining BLDC motor torque behavior, a dataset approach based on FEA parametric simulation studies and a GP formulation developed based on the dataset obtained from parametric simulations were proposed.</description><subject>Brushless motors</subject><subject>D C motors</subject><subject>Data points</subject><subject>Datasets</subject><subject>Economics and Management</subject><subject>Electric bicycles</subject><subject>Electric motors</subject><subject>Electric vehicles</subject><subject>Electrical Engineering</subject><subject>Electrical Machines and Networks</subject><subject>Energy Policy</subject><subject>Engineering</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Genetic algorithms</subject><subject>Mechanical analysis</subject><subject>Motor stators</subject><subject>Original Paper</subject><subject>Permanent magnets</subject><subject>Power Electronics</subject><subject>Stators</subject><subject>Torque</subject><issn>0948-7921</issn><issn>1432-0487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcIrEObB-NHaOqDylSnCAs2Una5oqrYvtIPH3OA0SNw5e745nZq0h5JLCNQWQNxGAASuB8XwYZaU6IjMqeIaEksdkBrVQpawZPSVnMW4AgC9qMSPm1QSzxRS6pmhNMhFTaXNtC-fDduhN6vyu8K4IJmUw-fA54DibwoYhrnuMsbhbFlufn0ZNgT02B7svXHdNj-fkxJk-4sXvPSfvD_dvy6dy9fL4vLxdlQ2TkErVonS04qqprJEWlapFZYxQiipqbUWBWu4q0VglrVOAUjiLwFsnFY7NnFxNvvvg8x9j0hs_hF1eqTnUC7qgTIrMYhOrCT7GgE7vQ7c14VtT0GOUeopS5yj1IUqtsohPopjJuw8Mf9b_qH4AedB3jA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yilmaz, Ahmet</creator><creator>Simsek, Cemaleddin</creator><creator>Balci, Selami</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Parametric dataset-based formulation of rated torque of a brushless DC motor for electric vehicle</title><author>Yilmaz, Ahmet ; Simsek, Cemaleddin ; Balci, Selami</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-8de7f1638c6ba7be88946aa488181bb6101b3f64cb87bf80e74fbe03df78ebe03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brushless motors</topic><topic>D C motors</topic><topic>Data points</topic><topic>Datasets</topic><topic>Economics and Management</topic><topic>Electric bicycles</topic><topic>Electric motors</topic><topic>Electric vehicles</topic><topic>Electrical Engineering</topic><topic>Electrical Machines and Networks</topic><topic>Energy Policy</topic><topic>Engineering</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Genetic algorithms</topic><topic>Mechanical analysis</topic><topic>Motor stators</topic><topic>Original Paper</topic><topic>Permanent magnets</topic><topic>Power Electronics</topic><topic>Stators</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yilmaz, Ahmet</creatorcontrib><creatorcontrib>Simsek, Cemaleddin</creatorcontrib><creatorcontrib>Balci, Selami</creatorcontrib><collection>CrossRef</collection><jtitle>Electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yilmaz, Ahmet</au><au>Simsek, Cemaleddin</au><au>Balci, Selami</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametric dataset-based formulation of rated torque of a brushless DC motor for electric vehicle</atitle><jtitle>Electrical engineering</jtitle><stitle>Electr Eng</stitle><date>2024</date><risdate>2024</risdate><volume>106</volume><issue>4</issue><spage>4327</spage><epage>4337</epage><pages>4327-4337</pages><issn>0948-7921</issn><eissn>1432-0487</eissn><abstract>This study aims to determine the mechanical response of a brushless DC motor (BLDC) used in two-wheeled electric vehicles by analyzing torque values through finite element analysis. The motor features a three-phase stator structure and four permanent magnets on its rotor. The study investigates the relationship between torque, pulse degree, excitation voltage, and stator current using RMxprt software. A parametric dataset consisting of 600 data points is generated to model the BLDC motor system. Genetic programming (GP) is employed to establish a formula that correlates the motor’s output torque with the input variables. The resulting simplified formula, created with GP, achieves a mean absolute percentage error (MAPE) of 0.085 and an R -squared ( R 2 ) value of 0.989, indicating high accuracy in torque prediction based on simulation parameters. This research provides a torque formulation based on parametric finite element analysis, offering potential benefits for electric bicycles and potentially eliminating the need for certain sensors. Thus, before experimental studies in the process of determining BLDC motor torque behavior, a dataset approach based on FEA parametric simulation studies and a GP formulation developed based on the dataset obtained from parametric simulations were proposed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00202-023-02212-8</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0948-7921
ispartof Electrical engineering, 2024, Vol.106 (4), p.4327-4337
issn 0948-7921
1432-0487
language eng
recordid cdi_proquest_journals_3095151274
source SpringerLink Journals - AutoHoldings
subjects Brushless motors
D C motors
Data points
Datasets
Economics and Management
Electric bicycles
Electric motors
Electric vehicles
Electrical Engineering
Electrical Machines and Networks
Energy Policy
Engineering
Finite element analysis
Finite element method
Genetic algorithms
Mechanical analysis
Motor stators
Original Paper
Permanent magnets
Power Electronics
Stators
Torque
title Parametric dataset-based formulation of rated torque of a brushless DC motor for electric vehicle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A09%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametric%20dataset-based%20formulation%20of%20rated%20torque%20of%20a%20brushless%20DC%20motor%20for%20electric%20vehicle&rft.jtitle=Electrical%20engineering&rft.au=Yilmaz,%20Ahmet&rft.date=2024&rft.volume=106&rft.issue=4&rft.spage=4327&rft.epage=4337&rft.pages=4327-4337&rft.issn=0948-7921&rft.eissn=1432-0487&rft_id=info:doi/10.1007/s00202-023-02212-8&rft_dat=%3Cproquest_cross%3E3095151274%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095151274&rft_id=info:pmid/&rfr_iscdi=true