Parameterized Physics-informed Neural Networks for Parameterized PDEs
Complex physical systems are often described by partial differential equations (PDEs) that depend on parameters such as the Reynolds number in fluid mechanics. In applications such as design optimization or uncertainty quantification, solutions of those PDEs need to be evaluated at numerous points i...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cho, Woojin Minju Jo Lim, Haksoo Lee, Kookjin Lee, Dongeun Hong, Sanghyun Park, Noseong |
description | Complex physical systems are often described by partial differential equations (PDEs) that depend on parameters such as the Reynolds number in fluid mechanics. In applications such as design optimization or uncertainty quantification, solutions of those PDEs need to be evaluated at numerous points in the parameter space. While physics-informed neural networks (PINNs) have emerged as a new strong competitor as a surrogate, their usage in this scenario remains underexplored due to the inherent need for repetitive and time-consuming training. In this paper, we address this problem by proposing a novel extension, parameterized physics-informed neural networks (P\(^2\)INNs). P\(^2\)INNs enable modeling the solutions of parameterized PDEs via explicitly encoding a latent representation of PDE parameters. With the extensive empirical evaluation, we demonstrate that P\(^2\)INNs outperform the baselines both in accuracy and parameter efficiency on benchmark 1D and 2D parameterized PDEs and are also effective in overcoming the known "failure modes". |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3094930492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3094930492</sourcerecordid><originalsourceid>FETCH-proquest_journals_30949304923</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwDUgsSsxNLUktyqxKTVEIyKgszkwu1s3MS8svygUK-KWWFiXmAKmS8vyi7GIFoLACmhYX12IeBta0xJziVF4ozc2g7OYa4uyhW1CUX1iaWlwSn5VfWpQHlIo3NrA0sTQ2MLE0MiZOFQCyEDs1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094930492</pqid></control><display><type>article</type><title>Parameterized Physics-informed Neural Networks for Parameterized PDEs</title><source>Freely Accessible Journals</source><creator>Cho, Woojin ; Minju Jo ; Lim, Haksoo ; Lee, Kookjin ; Lee, Dongeun ; Hong, Sanghyun ; Park, Noseong</creator><creatorcontrib>Cho, Woojin ; Minju Jo ; Lim, Haksoo ; Lee, Kookjin ; Lee, Dongeun ; Hong, Sanghyun ; Park, Noseong</creatorcontrib><description>Complex physical systems are often described by partial differential equations (PDEs) that depend on parameters such as the Reynolds number in fluid mechanics. In applications such as design optimization or uncertainty quantification, solutions of those PDEs need to be evaluated at numerous points in the parameter space. While physics-informed neural networks (PINNs) have emerged as a new strong competitor as a surrogate, their usage in this scenario remains underexplored due to the inherent need for repetitive and time-consuming training. In this paper, we address this problem by proposing a novel extension, parameterized physics-informed neural networks (P\(^2\)INNs). P\(^2\)INNs enable modeling the solutions of parameterized PDEs via explicitly encoding a latent representation of PDE parameters. With the extensive empirical evaluation, we demonstrate that P\(^2\)INNs outperform the baselines both in accuracy and parameter efficiency on benchmark 1D and 2D parameterized PDEs and are also effective in overcoming the known "failure modes".</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Design optimization ; Design parameters ; Failure modes ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Neural networks ; Parameter uncertainty ; Parameterization ; Partial differential equations ; Reynolds number</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Cho, Woojin</creatorcontrib><creatorcontrib>Minju Jo</creatorcontrib><creatorcontrib>Lim, Haksoo</creatorcontrib><creatorcontrib>Lee, Kookjin</creatorcontrib><creatorcontrib>Lee, Dongeun</creatorcontrib><creatorcontrib>Hong, Sanghyun</creatorcontrib><creatorcontrib>Park, Noseong</creatorcontrib><title>Parameterized Physics-informed Neural Networks for Parameterized PDEs</title><title>arXiv.org</title><description>Complex physical systems are often described by partial differential equations (PDEs) that depend on parameters such as the Reynolds number in fluid mechanics. In applications such as design optimization or uncertainty quantification, solutions of those PDEs need to be evaluated at numerous points in the parameter space. While physics-informed neural networks (PINNs) have emerged as a new strong competitor as a surrogate, their usage in this scenario remains underexplored due to the inherent need for repetitive and time-consuming training. In this paper, we address this problem by proposing a novel extension, parameterized physics-informed neural networks (P\(^2\)INNs). P\(^2\)INNs enable modeling the solutions of parameterized PDEs via explicitly encoding a latent representation of PDE parameters. With the extensive empirical evaluation, we demonstrate that P\(^2\)INNs outperform the baselines both in accuracy and parameter efficiency on benchmark 1D and 2D parameterized PDEs and are also effective in overcoming the known "failure modes".</description><subject>Design optimization</subject><subject>Design parameters</subject><subject>Failure modes</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Neural networks</subject><subject>Parameter uncertainty</subject><subject>Parameterization</subject><subject>Partial differential equations</subject><subject>Reynolds number</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwDUgsSsxNLUktyqxKTVEIyKgszkwu1s3MS8svygUK-KWWFiXmAKmS8vyi7GIFoLACmhYX12IeBta0xJziVF4ozc2g7OYa4uyhW1CUX1iaWlwSn5VfWpQHlIo3NrA0sTQ2MLE0MiZOFQCyEDs1</recordid><startdate>20240818</startdate><enddate>20240818</enddate><creator>Cho, Woojin</creator><creator>Minju Jo</creator><creator>Lim, Haksoo</creator><creator>Lee, Kookjin</creator><creator>Lee, Dongeun</creator><creator>Hong, Sanghyun</creator><creator>Park, Noseong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240818</creationdate><title>Parameterized Physics-informed Neural Networks for Parameterized PDEs</title><author>Cho, Woojin ; Minju Jo ; Lim, Haksoo ; Lee, Kookjin ; Lee, Dongeun ; Hong, Sanghyun ; Park, Noseong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30949304923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Design optimization</topic><topic>Design parameters</topic><topic>Failure modes</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Neural networks</topic><topic>Parameter uncertainty</topic><topic>Parameterization</topic><topic>Partial differential equations</topic><topic>Reynolds number</topic><toplevel>online_resources</toplevel><creatorcontrib>Cho, Woojin</creatorcontrib><creatorcontrib>Minju Jo</creatorcontrib><creatorcontrib>Lim, Haksoo</creatorcontrib><creatorcontrib>Lee, Kookjin</creatorcontrib><creatorcontrib>Lee, Dongeun</creatorcontrib><creatorcontrib>Hong, Sanghyun</creatorcontrib><creatorcontrib>Park, Noseong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Woojin</au><au>Minju Jo</au><au>Lim, Haksoo</au><au>Lee, Kookjin</au><au>Lee, Dongeun</au><au>Hong, Sanghyun</au><au>Park, Noseong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Parameterized Physics-informed Neural Networks for Parameterized PDEs</atitle><jtitle>arXiv.org</jtitle><date>2024-08-18</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Complex physical systems are often described by partial differential equations (PDEs) that depend on parameters such as the Reynolds number in fluid mechanics. In applications such as design optimization or uncertainty quantification, solutions of those PDEs need to be evaluated at numerous points in the parameter space. While physics-informed neural networks (PINNs) have emerged as a new strong competitor as a surrogate, their usage in this scenario remains underexplored due to the inherent need for repetitive and time-consuming training. In this paper, we address this problem by proposing a novel extension, parameterized physics-informed neural networks (P\(^2\)INNs). P\(^2\)INNs enable modeling the solutions of parameterized PDEs via explicitly encoding a latent representation of PDE parameters. With the extensive empirical evaluation, we demonstrate that P\(^2\)INNs outperform the baselines both in accuracy and parameter efficiency on benchmark 1D and 2D parameterized PDEs and are also effective in overcoming the known "failure modes".</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3094930492 |
source | Freely Accessible Journals |
subjects | Design optimization Design parameters Failure modes Fluid dynamics Fluid flow Fluid mechanics Neural networks Parameter uncertainty Parameterization Partial differential equations Reynolds number |
title | Parameterized Physics-informed Neural Networks for Parameterized PDEs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A34%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Parameterized%20Physics-informed%20Neural%20Networks%20for%20Parameterized%20PDEs&rft.jtitle=arXiv.org&rft.au=Cho,%20Woojin&rft.date=2024-08-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3094930492%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3094930492&rft_id=info:pmid/&rfr_iscdi=true |