Parameterized Physics-informed Neural Networks for Parameterized PDEs

Complex physical systems are often described by partial differential equations (PDEs) that depend on parameters such as the Reynolds number in fluid mechanics. In applications such as design optimization or uncertainty quantification, solutions of those PDEs need to be evaluated at numerous points i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Cho, Woojin, Minju Jo, Lim, Haksoo, Lee, Kookjin, Lee, Dongeun, Hong, Sanghyun, Park, Noseong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Cho, Woojin
Minju Jo
Lim, Haksoo
Lee, Kookjin
Lee, Dongeun
Hong, Sanghyun
Park, Noseong
description Complex physical systems are often described by partial differential equations (PDEs) that depend on parameters such as the Reynolds number in fluid mechanics. In applications such as design optimization or uncertainty quantification, solutions of those PDEs need to be evaluated at numerous points in the parameter space. While physics-informed neural networks (PINNs) have emerged as a new strong competitor as a surrogate, their usage in this scenario remains underexplored due to the inherent need for repetitive and time-consuming training. In this paper, we address this problem by proposing a novel extension, parameterized physics-informed neural networks (P\(^2\)INNs). P\(^2\)INNs enable modeling the solutions of parameterized PDEs via explicitly encoding a latent representation of PDE parameters. With the extensive empirical evaluation, we demonstrate that P\(^2\)INNs outperform the baselines both in accuracy and parameter efficiency on benchmark 1D and 2D parameterized PDEs and are also effective in overcoming the known "failure modes".
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3094930492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3094930492</sourcerecordid><originalsourceid>FETCH-proquest_journals_30949304923</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwDUgsSsxNLUktyqxKTVEIyKgszkwu1s3MS8svygUK-KWWFiXmAKmS8vyi7GIFoLACmhYX12IeBta0xJziVF4ozc2g7OYa4uyhW1CUX1iaWlwSn5VfWpQHlIo3NrA0sTQ2MLE0MiZOFQCyEDs1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094930492</pqid></control><display><type>article</type><title>Parameterized Physics-informed Neural Networks for Parameterized PDEs</title><source>Freely Accessible Journals</source><creator>Cho, Woojin ; Minju Jo ; Lim, Haksoo ; Lee, Kookjin ; Lee, Dongeun ; Hong, Sanghyun ; Park, Noseong</creator><creatorcontrib>Cho, Woojin ; Minju Jo ; Lim, Haksoo ; Lee, Kookjin ; Lee, Dongeun ; Hong, Sanghyun ; Park, Noseong</creatorcontrib><description>Complex physical systems are often described by partial differential equations (PDEs) that depend on parameters such as the Reynolds number in fluid mechanics. In applications such as design optimization or uncertainty quantification, solutions of those PDEs need to be evaluated at numerous points in the parameter space. While physics-informed neural networks (PINNs) have emerged as a new strong competitor as a surrogate, their usage in this scenario remains underexplored due to the inherent need for repetitive and time-consuming training. In this paper, we address this problem by proposing a novel extension, parameterized physics-informed neural networks (P\(^2\)INNs). P\(^2\)INNs enable modeling the solutions of parameterized PDEs via explicitly encoding a latent representation of PDE parameters. With the extensive empirical evaluation, we demonstrate that P\(^2\)INNs outperform the baselines both in accuracy and parameter efficiency on benchmark 1D and 2D parameterized PDEs and are also effective in overcoming the known "failure modes".</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Design optimization ; Design parameters ; Failure modes ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Neural networks ; Parameter uncertainty ; Parameterization ; Partial differential equations ; Reynolds number</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Cho, Woojin</creatorcontrib><creatorcontrib>Minju Jo</creatorcontrib><creatorcontrib>Lim, Haksoo</creatorcontrib><creatorcontrib>Lee, Kookjin</creatorcontrib><creatorcontrib>Lee, Dongeun</creatorcontrib><creatorcontrib>Hong, Sanghyun</creatorcontrib><creatorcontrib>Park, Noseong</creatorcontrib><title>Parameterized Physics-informed Neural Networks for Parameterized PDEs</title><title>arXiv.org</title><description>Complex physical systems are often described by partial differential equations (PDEs) that depend on parameters such as the Reynolds number in fluid mechanics. In applications such as design optimization or uncertainty quantification, solutions of those PDEs need to be evaluated at numerous points in the parameter space. While physics-informed neural networks (PINNs) have emerged as a new strong competitor as a surrogate, their usage in this scenario remains underexplored due to the inherent need for repetitive and time-consuming training. In this paper, we address this problem by proposing a novel extension, parameterized physics-informed neural networks (P\(^2\)INNs). P\(^2\)INNs enable modeling the solutions of parameterized PDEs via explicitly encoding a latent representation of PDE parameters. With the extensive empirical evaluation, we demonstrate that P\(^2\)INNs outperform the baselines both in accuracy and parameter efficiency on benchmark 1D and 2D parameterized PDEs and are also effective in overcoming the known "failure modes".</description><subject>Design optimization</subject><subject>Design parameters</subject><subject>Failure modes</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Neural networks</subject><subject>Parameter uncertainty</subject><subject>Parameterization</subject><subject>Partial differential equations</subject><subject>Reynolds number</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwDUgsSsxNLUktyqxKTVEIyKgszkwu1s3MS8svygUK-KWWFiXmAKmS8vyi7GIFoLACmhYX12IeBta0xJziVF4ozc2g7OYa4uyhW1CUX1iaWlwSn5VfWpQHlIo3NrA0sTQ2MLE0MiZOFQCyEDs1</recordid><startdate>20240818</startdate><enddate>20240818</enddate><creator>Cho, Woojin</creator><creator>Minju Jo</creator><creator>Lim, Haksoo</creator><creator>Lee, Kookjin</creator><creator>Lee, Dongeun</creator><creator>Hong, Sanghyun</creator><creator>Park, Noseong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240818</creationdate><title>Parameterized Physics-informed Neural Networks for Parameterized PDEs</title><author>Cho, Woojin ; Minju Jo ; Lim, Haksoo ; Lee, Kookjin ; Lee, Dongeun ; Hong, Sanghyun ; Park, Noseong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30949304923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Design optimization</topic><topic>Design parameters</topic><topic>Failure modes</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Neural networks</topic><topic>Parameter uncertainty</topic><topic>Parameterization</topic><topic>Partial differential equations</topic><topic>Reynolds number</topic><toplevel>online_resources</toplevel><creatorcontrib>Cho, Woojin</creatorcontrib><creatorcontrib>Minju Jo</creatorcontrib><creatorcontrib>Lim, Haksoo</creatorcontrib><creatorcontrib>Lee, Kookjin</creatorcontrib><creatorcontrib>Lee, Dongeun</creatorcontrib><creatorcontrib>Hong, Sanghyun</creatorcontrib><creatorcontrib>Park, Noseong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Woojin</au><au>Minju Jo</au><au>Lim, Haksoo</au><au>Lee, Kookjin</au><au>Lee, Dongeun</au><au>Hong, Sanghyun</au><au>Park, Noseong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Parameterized Physics-informed Neural Networks for Parameterized PDEs</atitle><jtitle>arXiv.org</jtitle><date>2024-08-18</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Complex physical systems are often described by partial differential equations (PDEs) that depend on parameters such as the Reynolds number in fluid mechanics. In applications such as design optimization or uncertainty quantification, solutions of those PDEs need to be evaluated at numerous points in the parameter space. While physics-informed neural networks (PINNs) have emerged as a new strong competitor as a surrogate, their usage in this scenario remains underexplored due to the inherent need for repetitive and time-consuming training. In this paper, we address this problem by proposing a novel extension, parameterized physics-informed neural networks (P\(^2\)INNs). P\(^2\)INNs enable modeling the solutions of parameterized PDEs via explicitly encoding a latent representation of PDE parameters. With the extensive empirical evaluation, we demonstrate that P\(^2\)INNs outperform the baselines both in accuracy and parameter efficiency on benchmark 1D and 2D parameterized PDEs and are also effective in overcoming the known "failure modes".</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_3094930492
source Freely Accessible Journals
subjects Design optimization
Design parameters
Failure modes
Fluid dynamics
Fluid flow
Fluid mechanics
Neural networks
Parameter uncertainty
Parameterization
Partial differential equations
Reynolds number
title Parameterized Physics-informed Neural Networks for Parameterized PDEs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A34%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Parameterized%20Physics-informed%20Neural%20Networks%20for%20Parameterized%20PDEs&rft.jtitle=arXiv.org&rft.au=Cho,%20Woojin&rft.date=2024-08-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3094930492%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3094930492&rft_id=info:pmid/&rfr_iscdi=true