Vision-assisted Avocado Harvesting with Aerial Bimanual Manipulation

Robotic fruit harvesting holds potential in precision agriculture to improve harvesting efficiency. While ground mobile robots are mostly employed in fruit harvesting, certain crops, like avocado trees, cannot be harvested efficiently from the ground alone. This is because of unstructured ground and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Liu, Zhichao, Zhou, Jingzong, Mucchiani, Caio, Karydis, Konstantinos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Liu, Zhichao
Zhou, Jingzong
Mucchiani, Caio
Karydis, Konstantinos
description Robotic fruit harvesting holds potential in precision agriculture to improve harvesting efficiency. While ground mobile robots are mostly employed in fruit harvesting, certain crops, like avocado trees, cannot be harvested efficiently from the ground alone. This is because of unstructured ground and planting arrangement and high-to-reach fruits. In such cases, aerial robots integrated with manipulation capabilities can pave new ways in robotic harvesting. This paper outlines the design and implementation of a bimanual UAV that employs visual perception and learning to autonomously detect avocados, reach, and harvest them. The dual-arm system comprises a gripper and a fixer arm, to address a key challenge when harvesting avocados: once grasped, a rotational motion is the most efficient way to detach the avocado from the peduncle; however, the peduncle may store elastic energy preventing the avocado from being harvested. The fixer arm aims to stabilize the peduncle, allowing the gripper arm to harvest. The integrated visual perception process enables the detection of avocados and the determination of their pose; the latter is then used to determine target points for a bimanual manipulation planner. Several experiments are conducted to assess the efficacy of each component, and integrated experiments assess the effectiveness of the system.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3094928971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3094928971</sourcerecordid><originalsourceid>FETCH-proquest_journals_30949289713</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwCcsszszP000sLs4sLklNUXAsy09OTMlX8EgsKkstLsnMS1cozyzJUHBMLcpMzFFwysxNzCsFMnwT8zILSnMSS4C6eRhY0xJzilN5oTQ3g7Kba4izh25BUX5hKdCU-Kz80qI8oFS8sYGliaWRhaW5oTFxqgBlNjry</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094928971</pqid></control><display><type>article</type><title>Vision-assisted Avocado Harvesting with Aerial Bimanual Manipulation</title><source>Free E- Journals</source><creator>Liu, Zhichao ; Zhou, Jingzong ; Mucchiani, Caio ; Karydis, Konstantinos</creator><creatorcontrib>Liu, Zhichao ; Zhou, Jingzong ; Mucchiani, Caio ; Karydis, Konstantinos</creatorcontrib><description>Robotic fruit harvesting holds potential in precision agriculture to improve harvesting efficiency. While ground mobile robots are mostly employed in fruit harvesting, certain crops, like avocado trees, cannot be harvested efficiently from the ground alone. This is because of unstructured ground and planting arrangement and high-to-reach fruits. In such cases, aerial robots integrated with manipulation capabilities can pave new ways in robotic harvesting. This paper outlines the design and implementation of a bimanual UAV that employs visual perception and learning to autonomously detect avocados, reach, and harvest them. The dual-arm system comprises a gripper and a fixer arm, to address a key challenge when harvesting avocados: once grasped, a rotational motion is the most efficient way to detach the avocado from the peduncle; however, the peduncle may store elastic energy preventing the avocado from being harvested. The fixer arm aims to stabilize the peduncle, allowing the gripper arm to harvest. The integrated visual perception process enables the detection of avocados and the determination of their pose; the latter is then used to determine target points for a bimanual manipulation planner. Several experiments are conducted to assess the efficacy of each component, and integrated experiments assess the effectiveness of the system.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Avocados ; Effectiveness ; Energy harvesting ; Harvest ; Robots ; Target detection ; Unmanned aerial vehicles ; Visual perception</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Liu, Zhichao</creatorcontrib><creatorcontrib>Zhou, Jingzong</creatorcontrib><creatorcontrib>Mucchiani, Caio</creatorcontrib><creatorcontrib>Karydis, Konstantinos</creatorcontrib><title>Vision-assisted Avocado Harvesting with Aerial Bimanual Manipulation</title><title>arXiv.org</title><description>Robotic fruit harvesting holds potential in precision agriculture to improve harvesting efficiency. While ground mobile robots are mostly employed in fruit harvesting, certain crops, like avocado trees, cannot be harvested efficiently from the ground alone. This is because of unstructured ground and planting arrangement and high-to-reach fruits. In such cases, aerial robots integrated with manipulation capabilities can pave new ways in robotic harvesting. This paper outlines the design and implementation of a bimanual UAV that employs visual perception and learning to autonomously detect avocados, reach, and harvest them. The dual-arm system comprises a gripper and a fixer arm, to address a key challenge when harvesting avocados: once grasped, a rotational motion is the most efficient way to detach the avocado from the peduncle; however, the peduncle may store elastic energy preventing the avocado from being harvested. The fixer arm aims to stabilize the peduncle, allowing the gripper arm to harvest. The integrated visual perception process enables the detection of avocados and the determination of their pose; the latter is then used to determine target points for a bimanual manipulation planner. Several experiments are conducted to assess the efficacy of each component, and integrated experiments assess the effectiveness of the system.</description><subject>Avocados</subject><subject>Effectiveness</subject><subject>Energy harvesting</subject><subject>Harvest</subject><subject>Robots</subject><subject>Target detection</subject><subject>Unmanned aerial vehicles</subject><subject>Visual perception</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwCcsszszP000sLs4sLklNUXAsy09OTMlX8EgsKkstLsnMS1cozyzJUHBMLcpMzFFwysxNzCsFMnwT8zILSnMSS4C6eRhY0xJzilN5oTQ3g7Kba4izh25BUX5hKdCU-Kz80qI8oFS8sYGliaWRhaW5oTFxqgBlNjry</recordid><startdate>20240817</startdate><enddate>20240817</enddate><creator>Liu, Zhichao</creator><creator>Zhou, Jingzong</creator><creator>Mucchiani, Caio</creator><creator>Karydis, Konstantinos</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240817</creationdate><title>Vision-assisted Avocado Harvesting with Aerial Bimanual Manipulation</title><author>Liu, Zhichao ; Zhou, Jingzong ; Mucchiani, Caio ; Karydis, Konstantinos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30949289713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Avocados</topic><topic>Effectiveness</topic><topic>Energy harvesting</topic><topic>Harvest</topic><topic>Robots</topic><topic>Target detection</topic><topic>Unmanned aerial vehicles</topic><topic>Visual perception</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhichao</creatorcontrib><creatorcontrib>Zhou, Jingzong</creatorcontrib><creatorcontrib>Mucchiani, Caio</creatorcontrib><creatorcontrib>Karydis, Konstantinos</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhichao</au><au>Zhou, Jingzong</au><au>Mucchiani, Caio</au><au>Karydis, Konstantinos</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Vision-assisted Avocado Harvesting with Aerial Bimanual Manipulation</atitle><jtitle>arXiv.org</jtitle><date>2024-08-17</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Robotic fruit harvesting holds potential in precision agriculture to improve harvesting efficiency. While ground mobile robots are mostly employed in fruit harvesting, certain crops, like avocado trees, cannot be harvested efficiently from the ground alone. This is because of unstructured ground and planting arrangement and high-to-reach fruits. In such cases, aerial robots integrated with manipulation capabilities can pave new ways in robotic harvesting. This paper outlines the design and implementation of a bimanual UAV that employs visual perception and learning to autonomously detect avocados, reach, and harvest them. The dual-arm system comprises a gripper and a fixer arm, to address a key challenge when harvesting avocados: once grasped, a rotational motion is the most efficient way to detach the avocado from the peduncle; however, the peduncle may store elastic energy preventing the avocado from being harvested. The fixer arm aims to stabilize the peduncle, allowing the gripper arm to harvest. The integrated visual perception process enables the detection of avocados and the determination of their pose; the latter is then used to determine target points for a bimanual manipulation planner. Several experiments are conducted to assess the efficacy of each component, and integrated experiments assess the effectiveness of the system.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_3094928971
source Free E- Journals
subjects Avocados
Effectiveness
Energy harvesting
Harvest
Robots
Target detection
Unmanned aerial vehicles
Visual perception
title Vision-assisted Avocado Harvesting with Aerial Bimanual Manipulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A40%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Vision-assisted%20Avocado%20Harvesting%20with%20Aerial%20Bimanual%20Manipulation&rft.jtitle=arXiv.org&rft.au=Liu,%20Zhichao&rft.date=2024-08-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3094928971%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3094928971&rft_id=info:pmid/&rfr_iscdi=true