Achieving multiferroic properties in bismuth titanate ceramics via a tri-doping engineering mechanism with Co, Sm, and La at room temperature
The discovery of advanced single-phase multiferroic materials at room temperature is expected to significantly impact the development of a wide range of electronic devices for next-generation applications. Based on this goal, the Co ions were selected as acceptors in the Ti 4+ site of the Bi 3.25 (S...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2024-08, Vol.35 (23), p.1607 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | 1607 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 35 |
creator | Alkathy, Mahmoud S. Rajesh, Yalambaku Milton, Flavio Paulo Zabotto, Fabio L. Mastelaro, Valmor R. Silva, Daniel Matos Santos, Ivair A. Eiras, J. A. |
description | The discovery of advanced single-phase multiferroic materials at room temperature is expected to significantly impact the development of a wide range of electronic devices for next-generation applications. Based on this goal, the Co ions were selected as acceptors in the Ti
4+
site of the Bi
3.25
(Sm
0.50
La
0.50
)
0.75
Ti
3
O
12
(BSLT) host lattice. The obtained systems show excellent ferroelectric, magnetic, and magnetodielectric properties. According to the structural analysis, no secondary phase could be observed, and all the prepared samples exhibited layered perovskite structures belonging to the n = 3 Aurivillius family. The morphological study shows that the average grain size decreases with increasing Co content. The ferroelectric and magnetic studies show that the residual polarization and magnetization exhibit opposite variations depending on the doping. The XPS results confirm that the Co is present in a mixed valence state, namely Co
2+
and Co
3+
. This suggests that the ferromagnetism at room temperature could be due to a double exchange interaction between the neighboring Co
2+
and Co
3+
ions and the oxygen ions. The study of the dielectric constant shows that the real and imaginary dielectric constants have the same trend and increase directly with the magnetic field increase. This indicates that the predominant mechanism of the MD effect is not an extrinsic Maxwell–Wagner mechanism but rather an intrinsic mechanism involving spin realignment of the Co
2+
–Co
3+
dipoles. |
doi_str_mv | 10.1007/s10854-024-13362-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_3094915424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3094915424</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-29e95bdfcebb28f83ebe2bae366c6f3f275ae05fbf268fb1b0759c47b87369063</originalsourceid><addsrcrecordid>eNpFkMtKAzEUhoMoWKsv4CrgttHcZ2ZZijcouFDB3ZBMT9qUzsUko0_hO5u2gptzNv-F_0PomtFbRmlxFxktlSSUS8KE0JywEzRhqhBElvzjFE1opQoiFefn6CLGLaVUS1FO0M-82Xj48t0at-MueQch9L7BQ-gHCMlDxL7D1sd2TBucfDKdSYAbCKb1TcRf3mCDU_Bk1Q_7FOjWvgMIh0RoNqbLXvzts3vRz_BrO8OmW-FltiUc-r7FCdpcZdIY4BKdObOLcPX3p-j94f5t8USWL4_Pi_mSDHlTIryCStmVa8BaXrpSgAVuDQitG-2E44UyQJWzjuvSWWZpoapGFrYshK6oFlN0c8zNMz9HiKne9mPocmUtaCUrpiSXWSWOqjjs50D4VzFa77nXR-515l4fuOf7C1FheQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094915424</pqid></control><display><type>article</type><title>Achieving multiferroic properties in bismuth titanate ceramics via a tri-doping engineering mechanism with Co, Sm, and La at room temperature</title><source>SpringerLink Journals - AutoHoldings</source><creator>Alkathy, Mahmoud S. ; Rajesh, Yalambaku ; Milton, Flavio Paulo ; Zabotto, Fabio L. ; Mastelaro, Valmor R. ; Silva, Daniel Matos ; Santos, Ivair A. ; Eiras, J. A.</creator><creatorcontrib>Alkathy, Mahmoud S. ; Rajesh, Yalambaku ; Milton, Flavio Paulo ; Zabotto, Fabio L. ; Mastelaro, Valmor R. ; Silva, Daniel Matos ; Santos, Ivair A. ; Eiras, J. A.</creatorcontrib><description>The discovery of advanced single-phase multiferroic materials at room temperature is expected to significantly impact the development of a wide range of electronic devices for next-generation applications. Based on this goal, the Co ions were selected as acceptors in the Ti
4+
site of the Bi
3.25
(Sm
0.50
La
0.50
)
0.75
Ti
3
O
12
(BSLT) host lattice. The obtained systems show excellent ferroelectric, magnetic, and magnetodielectric properties. According to the structural analysis, no secondary phase could be observed, and all the prepared samples exhibited layered perovskite structures belonging to the n = 3 Aurivillius family. The morphological study shows that the average grain size decreases with increasing Co content. The ferroelectric and magnetic studies show that the residual polarization and magnetization exhibit opposite variations depending on the doping. The XPS results confirm that the Co is present in a mixed valence state, namely Co
2+
and Co
3+
. This suggests that the ferromagnetism at room temperature could be due to a double exchange interaction between the neighboring Co
2+
and Co
3+
ions and the oxygen ions. The study of the dielectric constant shows that the real and imaginary dielectric constants have the same trend and increase directly with the magnetic field increase. This indicates that the predominant mechanism of the MD effect is not an extrinsic Maxwell–Wagner mechanism but rather an intrinsic mechanism involving spin realignment of the Co
2+
–Co
3+
dipoles.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-024-13362-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bismuth titanate ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cobalt ; Dielectric properties ; Dipoles ; Doping ; Electric properties ; Ferroelectric materials ; Ferroelectricity ; Ferromagnetism ; Grain size ; Magnetic properties ; Materials Science ; Multiferroic materials ; Optical and Electronic Materials ; Oxygen ions ; Permittivity ; Perovskites ; Physics ; Room temperature ; Structural analysis ; Valence</subject><ispartof>Journal of materials science. Materials in electronics, 2024-08, Vol.35 (23), p.1607</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9704-3418</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-024-13362-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-024-13362-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Alkathy, Mahmoud S.</creatorcontrib><creatorcontrib>Rajesh, Yalambaku</creatorcontrib><creatorcontrib>Milton, Flavio Paulo</creatorcontrib><creatorcontrib>Zabotto, Fabio L.</creatorcontrib><creatorcontrib>Mastelaro, Valmor R.</creatorcontrib><creatorcontrib>Silva, Daniel Matos</creatorcontrib><creatorcontrib>Santos, Ivair A.</creatorcontrib><creatorcontrib>Eiras, J. A.</creatorcontrib><title>Achieving multiferroic properties in bismuth titanate ceramics via a tri-doping engineering mechanism with Co, Sm, and La at room temperature</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>The discovery of advanced single-phase multiferroic materials at room temperature is expected to significantly impact the development of a wide range of electronic devices for next-generation applications. Based on this goal, the Co ions were selected as acceptors in the Ti
4+
site of the Bi
3.25
(Sm
0.50
La
0.50
)
0.75
Ti
3
O
12
(BSLT) host lattice. The obtained systems show excellent ferroelectric, magnetic, and magnetodielectric properties. According to the structural analysis, no secondary phase could be observed, and all the prepared samples exhibited layered perovskite structures belonging to the n = 3 Aurivillius family. The morphological study shows that the average grain size decreases with increasing Co content. The ferroelectric and magnetic studies show that the residual polarization and magnetization exhibit opposite variations depending on the doping. The XPS results confirm that the Co is present in a mixed valence state, namely Co
2+
and Co
3+
. This suggests that the ferromagnetism at room temperature could be due to a double exchange interaction between the neighboring Co
2+
and Co
3+
ions and the oxygen ions. The study of the dielectric constant shows that the real and imaginary dielectric constants have the same trend and increase directly with the magnetic field increase. This indicates that the predominant mechanism of the MD effect is not an extrinsic Maxwell–Wagner mechanism but rather an intrinsic mechanism involving spin realignment of the Co
2+
–Co
3+
dipoles.</description><subject>Bismuth titanate</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cobalt</subject><subject>Dielectric properties</subject><subject>Dipoles</subject><subject>Doping</subject><subject>Electric properties</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferromagnetism</subject><subject>Grain size</subject><subject>Magnetic properties</subject><subject>Materials Science</subject><subject>Multiferroic materials</subject><subject>Optical and Electronic Materials</subject><subject>Oxygen ions</subject><subject>Permittivity</subject><subject>Perovskites</subject><subject>Physics</subject><subject>Room temperature</subject><subject>Structural analysis</subject><subject>Valence</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkMtKAzEUhoMoWKsv4CrgttHcZ2ZZijcouFDB3ZBMT9qUzsUko0_hO5u2gptzNv-F_0PomtFbRmlxFxktlSSUS8KE0JywEzRhqhBElvzjFE1opQoiFefn6CLGLaVUS1FO0M-82Xj48t0at-MueQch9L7BQ-gHCMlDxL7D1sd2TBucfDKdSYAbCKb1TcRf3mCDU_Bk1Q_7FOjWvgMIh0RoNqbLXvzts3vRz_BrO8OmW-FltiUc-r7FCdpcZdIY4BKdObOLcPX3p-j94f5t8USWL4_Pi_mSDHlTIryCStmVa8BaXrpSgAVuDQitG-2E44UyQJWzjuvSWWZpoapGFrYshK6oFlN0c8zNMz9HiKne9mPocmUtaCUrpiSXWSWOqjjs50D4VzFa77nXR-515l4fuOf7C1FheQQ</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Alkathy, Mahmoud S.</creator><creator>Rajesh, Yalambaku</creator><creator>Milton, Flavio Paulo</creator><creator>Zabotto, Fabio L.</creator><creator>Mastelaro, Valmor R.</creator><creator>Silva, Daniel Matos</creator><creator>Santos, Ivair A.</creator><creator>Eiras, J. A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9704-3418</orcidid></search><sort><creationdate>20240801</creationdate><title>Achieving multiferroic properties in bismuth titanate ceramics via a tri-doping engineering mechanism with Co, Sm, and La at room temperature</title><author>Alkathy, Mahmoud S. ; Rajesh, Yalambaku ; Milton, Flavio Paulo ; Zabotto, Fabio L. ; Mastelaro, Valmor R. ; Silva, Daniel Matos ; Santos, Ivair A. ; Eiras, J. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-29e95bdfcebb28f83ebe2bae366c6f3f275ae05fbf268fb1b0759c47b87369063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bismuth titanate</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cobalt</topic><topic>Dielectric properties</topic><topic>Dipoles</topic><topic>Doping</topic><topic>Electric properties</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferromagnetism</topic><topic>Grain size</topic><topic>Magnetic properties</topic><topic>Materials Science</topic><topic>Multiferroic materials</topic><topic>Optical and Electronic Materials</topic><topic>Oxygen ions</topic><topic>Permittivity</topic><topic>Perovskites</topic><topic>Physics</topic><topic>Room temperature</topic><topic>Structural analysis</topic><topic>Valence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alkathy, Mahmoud S.</creatorcontrib><creatorcontrib>Rajesh, Yalambaku</creatorcontrib><creatorcontrib>Milton, Flavio Paulo</creatorcontrib><creatorcontrib>Zabotto, Fabio L.</creatorcontrib><creatorcontrib>Mastelaro, Valmor R.</creatorcontrib><creatorcontrib>Silva, Daniel Matos</creatorcontrib><creatorcontrib>Santos, Ivair A.</creatorcontrib><creatorcontrib>Eiras, J. A.</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alkathy, Mahmoud S.</au><au>Rajesh, Yalambaku</au><au>Milton, Flavio Paulo</au><au>Zabotto, Fabio L.</au><au>Mastelaro, Valmor R.</au><au>Silva, Daniel Matos</au><au>Santos, Ivair A.</au><au>Eiras, J. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving multiferroic properties in bismuth titanate ceramics via a tri-doping engineering mechanism with Co, Sm, and La at room temperature</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>35</volume><issue>23</issue><spage>1607</spage><pages>1607-</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>The discovery of advanced single-phase multiferroic materials at room temperature is expected to significantly impact the development of a wide range of electronic devices for next-generation applications. Based on this goal, the Co ions were selected as acceptors in the Ti
4+
site of the Bi
3.25
(Sm
0.50
La
0.50
)
0.75
Ti
3
O
12
(BSLT) host lattice. The obtained systems show excellent ferroelectric, magnetic, and magnetodielectric properties. According to the structural analysis, no secondary phase could be observed, and all the prepared samples exhibited layered perovskite structures belonging to the n = 3 Aurivillius family. The morphological study shows that the average grain size decreases with increasing Co content. The ferroelectric and magnetic studies show that the residual polarization and magnetization exhibit opposite variations depending on the doping. The XPS results confirm that the Co is present in a mixed valence state, namely Co
2+
and Co
3+
. This suggests that the ferromagnetism at room temperature could be due to a double exchange interaction between the neighboring Co
2+
and Co
3+
ions and the oxygen ions. The study of the dielectric constant shows that the real and imaginary dielectric constants have the same trend and increase directly with the magnetic field increase. This indicates that the predominant mechanism of the MD effect is not an extrinsic Maxwell–Wagner mechanism but rather an intrinsic mechanism involving spin realignment of the Co
2+
–Co
3+
dipoles.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-024-13362-1</doi><orcidid>https://orcid.org/0000-0001-9704-3418</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2024-08, Vol.35 (23), p.1607 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_3094915424 |
source | SpringerLink Journals - AutoHoldings |
subjects | Bismuth titanate Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Cobalt Dielectric properties Dipoles Doping Electric properties Ferroelectric materials Ferroelectricity Ferromagnetism Grain size Magnetic properties Materials Science Multiferroic materials Optical and Electronic Materials Oxygen ions Permittivity Perovskites Physics Room temperature Structural analysis Valence |
title | Achieving multiferroic properties in bismuth titanate ceramics via a tri-doping engineering mechanism with Co, Sm, and La at room temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20multiferroic%20properties%20in%20bismuth%20titanate%20ceramics%20via%20a%20tri-doping%20engineering%20mechanism%20with%20Co,%20Sm,%20and%20La%20at%20room%20temperature&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Alkathy,%20Mahmoud%20S.&rft.date=2024-08-01&rft.volume=35&rft.issue=23&rft.spage=1607&rft.pages=1607-&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-024-13362-1&rft_dat=%3Cproquest_sprin%3E3094915424%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3094915424&rft_id=info:pmid/&rfr_iscdi=true |