Dynamic wake steering control for maximizing wind farm power based on a physics-guided neural network dynamic wake model
Wake effect is a significant factor contributing to power loss in wind farms. Studies have shown that wake steering control can mitigate this power loss. Currently, wind farm wake control strategies primarily utilize fixed yaw control due to limitations in the accuracy and efficiency of dynamic wake...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2024-08, Vol.36 (8) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 36 |
creator | Li Baoliang Ge Mingwei Li, Xintao Liu Yongqian |
description | Wake effect is a significant factor contributing to power loss in wind farms. Studies have shown that wake steering control can mitigate this power loss. Currently, wind farm wake control strategies primarily utilize fixed yaw control due to limitations in the accuracy and efficiency of dynamic wake models. However, fixed yaw control fails to fully exploit the power improvement potential of wake steering control. Therefore, in this study, we first propose a dynamic wake model for wind farms based on the physics-guided neural network (PGNN) approach. This model can predict the dynamic wake flow field within wind farms in real time using instantaneous inflow wind speed and turbine operational states. Then, by employing the PGNN dynamic wake model as the predictive model, a wind farm dynamic wake control strategy based on the model predictive control method is proposed. To quantify the advantages of the proposed control strategy, both fixed yaw control and dynamic yaw control are tested on a wind farm with a 3 × 2 layout. Results from large eddy simulations demonstrate that the proposed dynamic wake control strategy increases the power output of the wind farm by 11.51% compared to a 6.56% increase achieved with fixed yaw control. |
doi_str_mv | 10.1063/5.0223631 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3094893952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3094893952</sourcerecordid><originalsourceid>FETCH-LOGICAL-p148t-fbe9f9ffb59739e6a7ad4361652c2847c0b3fe65490ef1967dd74c341a0c33d73</originalsourceid><addsrcrecordid>eNpNkM1LwzAAxYMoOKcH_4OAN6EzadqkOcr8hIEXPZc0HzNbm9QkpZt_vR3bwdN7_Hi8Bw-AW4wWGFHyUC5QnhNK8BmYYVTxjFFKzw-eoYxO_BJcxbhBCBGe0xnYPe2d6KyEo9hqGJPWwbo1lN6l4FtofICd2NnO_h7waJ2CRoQO9n7UATYiagW9gwL23_toZczWg1UTc3oIop0kjT5sofq_0nml22twYUQb9c1J5-Dr5flz-ZatPl7fl4-rrMdFlTLTaG64MU3JGeGaCiZUQSimZS7zqmASNcRoWhYcaYM5ZUqxQpICCyQJUYzMwd2xtw_-Z9Ax1Rs_BDdN1gTxouKEl_mUuj-morRJJOtd3QfbibCvMaoPz9ZlfXqW_AEHWWxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094893952</pqid></control><display><type>article</type><title>Dynamic wake steering control for maximizing wind farm power based on a physics-guided neural network dynamic wake model</title><source>AIP Journals Complete</source><creator>Li Baoliang ; Ge Mingwei ; Li, Xintao ; Liu Yongqian</creator><creatorcontrib>Li Baoliang ; Ge Mingwei ; Li, Xintao ; Liu Yongqian</creatorcontrib><description>Wake effect is a significant factor contributing to power loss in wind farms. Studies have shown that wake steering control can mitigate this power loss. Currently, wind farm wake control strategies primarily utilize fixed yaw control due to limitations in the accuracy and efficiency of dynamic wake models. However, fixed yaw control fails to fully exploit the power improvement potential of wake steering control. Therefore, in this study, we first propose a dynamic wake model for wind farms based on the physics-guided neural network (PGNN) approach. This model can predict the dynamic wake flow field within wind farms in real time using instantaneous inflow wind speed and turbine operational states. Then, by employing the PGNN dynamic wake model as the predictive model, a wind farm dynamic wake control strategy based on the model predictive control method is proposed. To quantify the advantages of the proposed control strategy, both fixed yaw control and dynamic yaw control are tested on a wind farm with a 3 × 2 layout. Results from large eddy simulations demonstrate that the proposed dynamic wake control strategy increases the power output of the wind farm by 11.51% compared to a 6.56% increase achieved with fixed yaw control.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0223631</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aerial patrol ; Control methods ; Large eddy simulation ; Neural networks ; Prediction models ; Predictive control ; Real time operation ; Steering ; Wind effects ; Wind farms ; Wind power ; Wind speed ; Wind turbines ; Yaw</subject><ispartof>Physics of fluids (1994), 2024-08, Vol.36 (8)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7070-7122 ; 0000-0001-5408-0796 ; 0000-0001-5051-3283 ; 0000-0002-6874-4351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,796,4516,27933,27934</link.rule.ids></links><search><creatorcontrib>Li Baoliang</creatorcontrib><creatorcontrib>Ge Mingwei</creatorcontrib><creatorcontrib>Li, Xintao</creatorcontrib><creatorcontrib>Liu Yongqian</creatorcontrib><title>Dynamic wake steering control for maximizing wind farm power based on a physics-guided neural network dynamic wake model</title><title>Physics of fluids (1994)</title><description>Wake effect is a significant factor contributing to power loss in wind farms. Studies have shown that wake steering control can mitigate this power loss. Currently, wind farm wake control strategies primarily utilize fixed yaw control due to limitations in the accuracy and efficiency of dynamic wake models. However, fixed yaw control fails to fully exploit the power improvement potential of wake steering control. Therefore, in this study, we first propose a dynamic wake model for wind farms based on the physics-guided neural network (PGNN) approach. This model can predict the dynamic wake flow field within wind farms in real time using instantaneous inflow wind speed and turbine operational states. Then, by employing the PGNN dynamic wake model as the predictive model, a wind farm dynamic wake control strategy based on the model predictive control method is proposed. To quantify the advantages of the proposed control strategy, both fixed yaw control and dynamic yaw control are tested on a wind farm with a 3 × 2 layout. Results from large eddy simulations demonstrate that the proposed dynamic wake control strategy increases the power output of the wind farm by 11.51% compared to a 6.56% increase achieved with fixed yaw control.</description><subject>Aerial patrol</subject><subject>Control methods</subject><subject>Large eddy simulation</subject><subject>Neural networks</subject><subject>Prediction models</subject><subject>Predictive control</subject><subject>Real time operation</subject><subject>Steering</subject><subject>Wind effects</subject><subject>Wind farms</subject><subject>Wind power</subject><subject>Wind speed</subject><subject>Wind turbines</subject><subject>Yaw</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM1LwzAAxYMoOKcH_4OAN6EzadqkOcr8hIEXPZc0HzNbm9QkpZt_vR3bwdN7_Hi8Bw-AW4wWGFHyUC5QnhNK8BmYYVTxjFFKzw-eoYxO_BJcxbhBCBGe0xnYPe2d6KyEo9hqGJPWwbo1lN6l4FtofICd2NnO_h7waJ2CRoQO9n7UATYiagW9gwL23_toZczWg1UTc3oIop0kjT5sofq_0nml22twYUQb9c1J5-Dr5flz-ZatPl7fl4-rrMdFlTLTaG64MU3JGeGaCiZUQSimZS7zqmASNcRoWhYcaYM5ZUqxQpICCyQJUYzMwd2xtw_-Z9Ax1Rs_BDdN1gTxouKEl_mUuj-morRJJOtd3QfbibCvMaoPz9ZlfXqW_AEHWWxg</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Li Baoliang</creator><creator>Ge Mingwei</creator><creator>Li, Xintao</creator><creator>Liu Yongqian</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7070-7122</orcidid><orcidid>https://orcid.org/0000-0001-5408-0796</orcidid><orcidid>https://orcid.org/0000-0001-5051-3283</orcidid><orcidid>https://orcid.org/0000-0002-6874-4351</orcidid></search><sort><creationdate>202408</creationdate><title>Dynamic wake steering control for maximizing wind farm power based on a physics-guided neural network dynamic wake model</title><author>Li Baoliang ; Ge Mingwei ; Li, Xintao ; Liu Yongqian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p148t-fbe9f9ffb59739e6a7ad4361652c2847c0b3fe65490ef1967dd74c341a0c33d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerial patrol</topic><topic>Control methods</topic><topic>Large eddy simulation</topic><topic>Neural networks</topic><topic>Prediction models</topic><topic>Predictive control</topic><topic>Real time operation</topic><topic>Steering</topic><topic>Wind effects</topic><topic>Wind farms</topic><topic>Wind power</topic><topic>Wind speed</topic><topic>Wind turbines</topic><topic>Yaw</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li Baoliang</creatorcontrib><creatorcontrib>Ge Mingwei</creatorcontrib><creatorcontrib>Li, Xintao</creatorcontrib><creatorcontrib>Liu Yongqian</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li Baoliang</au><au>Ge Mingwei</au><au>Li, Xintao</au><au>Liu Yongqian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic wake steering control for maximizing wind farm power based on a physics-guided neural network dynamic wake model</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-08</date><risdate>2024</risdate><volume>36</volume><issue>8</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Wake effect is a significant factor contributing to power loss in wind farms. Studies have shown that wake steering control can mitigate this power loss. Currently, wind farm wake control strategies primarily utilize fixed yaw control due to limitations in the accuracy and efficiency of dynamic wake models. However, fixed yaw control fails to fully exploit the power improvement potential of wake steering control. Therefore, in this study, we first propose a dynamic wake model for wind farms based on the physics-guided neural network (PGNN) approach. This model can predict the dynamic wake flow field within wind farms in real time using instantaneous inflow wind speed and turbine operational states. Then, by employing the PGNN dynamic wake model as the predictive model, a wind farm dynamic wake control strategy based on the model predictive control method is proposed. To quantify the advantages of the proposed control strategy, both fixed yaw control and dynamic yaw control are tested on a wind farm with a 3 × 2 layout. Results from large eddy simulations demonstrate that the proposed dynamic wake control strategy increases the power output of the wind farm by 11.51% compared to a 6.56% increase achieved with fixed yaw control.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0223631</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7070-7122</orcidid><orcidid>https://orcid.org/0000-0001-5408-0796</orcidid><orcidid>https://orcid.org/0000-0001-5051-3283</orcidid><orcidid>https://orcid.org/0000-0002-6874-4351</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2024-08, Vol.36 (8) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_proquest_journals_3094893952 |
source | AIP Journals Complete |
subjects | Aerial patrol Control methods Large eddy simulation Neural networks Prediction models Predictive control Real time operation Steering Wind effects Wind farms Wind power Wind speed Wind turbines Yaw |
title | Dynamic wake steering control for maximizing wind farm power based on a physics-guided neural network dynamic wake model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T05%3A37%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20wake%20steering%20control%20for%20maximizing%20wind%20farm%20power%20based%20on%20a%20physics-guided%20neural%20network%20dynamic%20wake%20model&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Li%20Baoliang&rft.date=2024-08&rft.volume=36&rft.issue=8&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0223631&rft_dat=%3Cproquest_scita%3E3094893952%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3094893952&rft_id=info:pmid/&rfr_iscdi=true |