Speckle Noise Analysis for Synthetic Aperture Radar (SAR) Space Data

This research tackles the challenge of speckle noise in Synthetic Aperture Radar (SAR) space data, a prevalent issue that hampers the clarity and utility of SAR images. The study presents a comparative analysis of six distinct speckle noise reduction techniques: Lee Filtering, Frost Filtering, Kuan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Sanjjushri, Varshini R, Mahadevan, Rohith, Bagiya, Lakshmi S, Mathivanan Periasamy, Raman, Raja CSP, Lokesh, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sanjjushri, Varshini R
Mahadevan, Rohith
Bagiya, Lakshmi S
Mathivanan Periasamy
Raman, Raja CSP
Lokesh, M
description This research tackles the challenge of speckle noise in Synthetic Aperture Radar (SAR) space data, a prevalent issue that hampers the clarity and utility of SAR images. The study presents a comparative analysis of six distinct speckle noise reduction techniques: Lee Filtering, Frost Filtering, Kuan Filtering, Gaussian Filtering, Median Filtering, and Bilateral Filtering. These methods, selected for their unique approaches to noise reduction and image preservation, were applied to SAR datasets sourced from the Alaska Satellite Facility (ASF). The performance of each technique was evaluated using a comprehensive set of metrics, including Peak Signal-to-Noise Ratio (PSNR), Mean Squared Error (MSE), Structural Similarity Index (SSIM), Equivalent Number of Looks (ENL), and Speckle Suppression Index (SSI). The study concludes that both the Lee and Kuan Filters are effective, with the choice of filter depending on the specific application requirements for image quality and noise suppression. This work provides valuable insights into optimizing SAR image processing, with significant implications for remote sensing, environmental monitoring, and geological surveying.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3094563267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3094563267</sourcerecordid><originalsourceid>FETCH-proquest_journals_30945632673</originalsourceid><addsrcrecordid>eNqNjbEOgjAUABsTE4nyDy9x0YGktoA6EtE4OVB20uAjgoTWvjLw9zL4AU63XO4WLBBSHqJTLMSKhUQd51ykR5EkMmC5sli_e4SHaQkhG3Q_UUvQGAdqGvwLfVtDZtH50SEU-qkd7FRW7EFZXSPk2usNWza6Jwx_XLPt7Vpe7pF15jMi-aozo5vTVEl-jpNUzn_5n_UFoLk5HQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094563267</pqid></control><display><type>article</type><title>Speckle Noise Analysis for Synthetic Aperture Radar (SAR) Space Data</title><source>Open Access: Freely Accessible Journals by multiple vendors</source><creator>Sanjjushri, Varshini R ; Mahadevan, Rohith ; Bagiya, Lakshmi S ; Mathivanan Periasamy ; Raman, Raja CSP ; Lokesh, M</creator><creatorcontrib>Sanjjushri, Varshini R ; Mahadevan, Rohith ; Bagiya, Lakshmi S ; Mathivanan Periasamy ; Raman, Raja CSP ; Lokesh, M</creatorcontrib><description>This research tackles the challenge of speckle noise in Synthetic Aperture Radar (SAR) space data, a prevalent issue that hampers the clarity and utility of SAR images. The study presents a comparative analysis of six distinct speckle noise reduction techniques: Lee Filtering, Frost Filtering, Kuan Filtering, Gaussian Filtering, Median Filtering, and Bilateral Filtering. These methods, selected for their unique approaches to noise reduction and image preservation, were applied to SAR datasets sourced from the Alaska Satellite Facility (ASF). The performance of each technique was evaluated using a comprehensive set of metrics, including Peak Signal-to-Noise Ratio (PSNR), Mean Squared Error (MSE), Structural Similarity Index (SSIM), Equivalent Number of Looks (ENL), and Speckle Suppression Index (SSI). The study concludes that both the Lee and Kuan Filters are effective, with the choice of filter depending on the specific application requirements for image quality and noise suppression. This work provides valuable insights into optimizing SAR image processing, with significant implications for remote sensing, environmental monitoring, and geological surveying.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data analysis ; Environmental monitoring ; Geological surveys ; Image filters ; Image processing ; Image quality ; Noise monitoring ; Noise reduction ; Radar data ; Radar imaging ; Remote monitoring ; Remote sensing ; Satellite imagery ; Signal to noise ratio ; Synthetic aperture radar</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Sanjjushri, Varshini R</creatorcontrib><creatorcontrib>Mahadevan, Rohith</creatorcontrib><creatorcontrib>Bagiya, Lakshmi S</creatorcontrib><creatorcontrib>Mathivanan Periasamy</creatorcontrib><creatorcontrib>Raman, Raja CSP</creatorcontrib><creatorcontrib>Lokesh, M</creatorcontrib><title>Speckle Noise Analysis for Synthetic Aperture Radar (SAR) Space Data</title><title>arXiv.org</title><description>This research tackles the challenge of speckle noise in Synthetic Aperture Radar (SAR) space data, a prevalent issue that hampers the clarity and utility of SAR images. The study presents a comparative analysis of six distinct speckle noise reduction techniques: Lee Filtering, Frost Filtering, Kuan Filtering, Gaussian Filtering, Median Filtering, and Bilateral Filtering. These methods, selected for their unique approaches to noise reduction and image preservation, were applied to SAR datasets sourced from the Alaska Satellite Facility (ASF). The performance of each technique was evaluated using a comprehensive set of metrics, including Peak Signal-to-Noise Ratio (PSNR), Mean Squared Error (MSE), Structural Similarity Index (SSIM), Equivalent Number of Looks (ENL), and Speckle Suppression Index (SSI). The study concludes that both the Lee and Kuan Filters are effective, with the choice of filter depending on the specific application requirements for image quality and noise suppression. This work provides valuable insights into optimizing SAR image processing, with significant implications for remote sensing, environmental monitoring, and geological surveying.</description><subject>Data analysis</subject><subject>Environmental monitoring</subject><subject>Geological surveys</subject><subject>Image filters</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Noise monitoring</subject><subject>Noise reduction</subject><subject>Radar data</subject><subject>Radar imaging</subject><subject>Remote monitoring</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Signal to noise ratio</subject><subject>Synthetic aperture radar</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjbEOgjAUABsTE4nyDy9x0YGktoA6EtE4OVB20uAjgoTWvjLw9zL4AU63XO4WLBBSHqJTLMSKhUQd51ykR5EkMmC5sli_e4SHaQkhG3Q_UUvQGAdqGvwLfVtDZtH50SEU-qkd7FRW7EFZXSPk2usNWza6Jwx_XLPt7Vpe7pF15jMi-aozo5vTVEl-jpNUzn_5n_UFoLk5HQ</recordid><startdate>20240816</startdate><enddate>20240816</enddate><creator>Sanjjushri, Varshini R</creator><creator>Mahadevan, Rohith</creator><creator>Bagiya, Lakshmi S</creator><creator>Mathivanan Periasamy</creator><creator>Raman, Raja CSP</creator><creator>Lokesh, M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240816</creationdate><title>Speckle Noise Analysis for Synthetic Aperture Radar (SAR) Space Data</title><author>Sanjjushri, Varshini R ; Mahadevan, Rohith ; Bagiya, Lakshmi S ; Mathivanan Periasamy ; Raman, Raja CSP ; Lokesh, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30945632673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data analysis</topic><topic>Environmental monitoring</topic><topic>Geological surveys</topic><topic>Image filters</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Noise monitoring</topic><topic>Noise reduction</topic><topic>Radar data</topic><topic>Radar imaging</topic><topic>Remote monitoring</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Signal to noise ratio</topic><topic>Synthetic aperture radar</topic><toplevel>online_resources</toplevel><creatorcontrib>Sanjjushri, Varshini R</creatorcontrib><creatorcontrib>Mahadevan, Rohith</creatorcontrib><creatorcontrib>Bagiya, Lakshmi S</creatorcontrib><creatorcontrib>Mathivanan Periasamy</creatorcontrib><creatorcontrib>Raman, Raja CSP</creatorcontrib><creatorcontrib>Lokesh, M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanjjushri, Varshini R</au><au>Mahadevan, Rohith</au><au>Bagiya, Lakshmi S</au><au>Mathivanan Periasamy</au><au>Raman, Raja CSP</au><au>Lokesh, M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Speckle Noise Analysis for Synthetic Aperture Radar (SAR) Space Data</atitle><jtitle>arXiv.org</jtitle><date>2024-08-16</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This research tackles the challenge of speckle noise in Synthetic Aperture Radar (SAR) space data, a prevalent issue that hampers the clarity and utility of SAR images. The study presents a comparative analysis of six distinct speckle noise reduction techniques: Lee Filtering, Frost Filtering, Kuan Filtering, Gaussian Filtering, Median Filtering, and Bilateral Filtering. These methods, selected for their unique approaches to noise reduction and image preservation, were applied to SAR datasets sourced from the Alaska Satellite Facility (ASF). The performance of each technique was evaluated using a comprehensive set of metrics, including Peak Signal-to-Noise Ratio (PSNR), Mean Squared Error (MSE), Structural Similarity Index (SSIM), Equivalent Number of Looks (ENL), and Speckle Suppression Index (SSI). The study concludes that both the Lee and Kuan Filters are effective, with the choice of filter depending on the specific application requirements for image quality and noise suppression. This work provides valuable insights into optimizing SAR image processing, with significant implications for remote sensing, environmental monitoring, and geological surveying.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_3094563267
source Open Access: Freely Accessible Journals by multiple vendors
subjects Data analysis
Environmental monitoring
Geological surveys
Image filters
Image processing
Image quality
Noise monitoring
Noise reduction
Radar data
Radar imaging
Remote monitoring
Remote sensing
Satellite imagery
Signal to noise ratio
Synthetic aperture radar
title Speckle Noise Analysis for Synthetic Aperture Radar (SAR) Space Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Speckle%20Noise%20Analysis%20for%20Synthetic%20Aperture%20Radar%20(SAR)%20Space%20Data&rft.jtitle=arXiv.org&rft.au=Sanjjushri,%20Varshini%20R&rft.date=2024-08-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3094563267%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3094563267&rft_id=info:pmid/&rfr_iscdi=true