Speckle Noise Analysis for Synthetic Aperture Radar (SAR) Space Data
This research tackles the challenge of speckle noise in Synthetic Aperture Radar (SAR) space data, a prevalent issue that hampers the clarity and utility of SAR images. The study presents a comparative analysis of six distinct speckle noise reduction techniques: Lee Filtering, Frost Filtering, Kuan...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sanjjushri, Varshini R Mahadevan, Rohith Bagiya, Lakshmi S Mathivanan Periasamy Raman, Raja CSP Lokesh, M |
description | This research tackles the challenge of speckle noise in Synthetic Aperture Radar (SAR) space data, a prevalent issue that hampers the clarity and utility of SAR images. The study presents a comparative analysis of six distinct speckle noise reduction techniques: Lee Filtering, Frost Filtering, Kuan Filtering, Gaussian Filtering, Median Filtering, and Bilateral Filtering. These methods, selected for their unique approaches to noise reduction and image preservation, were applied to SAR datasets sourced from the Alaska Satellite Facility (ASF). The performance of each technique was evaluated using a comprehensive set of metrics, including Peak Signal-to-Noise Ratio (PSNR), Mean Squared Error (MSE), Structural Similarity Index (SSIM), Equivalent Number of Looks (ENL), and Speckle Suppression Index (SSI). The study concludes that both the Lee and Kuan Filters are effective, with the choice of filter depending on the specific application requirements for image quality and noise suppression. This work provides valuable insights into optimizing SAR image processing, with significant implications for remote sensing, environmental monitoring, and geological surveying. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3094563267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3094563267</sourcerecordid><originalsourceid>FETCH-proquest_journals_30945632673</originalsourceid><addsrcrecordid>eNqNjbEOgjAUABsTE4nyDy9x0YGktoA6EtE4OVB20uAjgoTWvjLw9zL4AU63XO4WLBBSHqJTLMSKhUQd51ykR5EkMmC5sli_e4SHaQkhG3Q_UUvQGAdqGvwLfVtDZtH50SEU-qkd7FRW7EFZXSPk2usNWza6Jwx_XLPt7Vpe7pF15jMi-aozo5vTVEl-jpNUzn_5n_UFoLk5HQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094563267</pqid></control><display><type>article</type><title>Speckle Noise Analysis for Synthetic Aperture Radar (SAR) Space Data</title><source>Open Access: Freely Accessible Journals by multiple vendors</source><creator>Sanjjushri, Varshini R ; Mahadevan, Rohith ; Bagiya, Lakshmi S ; Mathivanan Periasamy ; Raman, Raja CSP ; Lokesh, M</creator><creatorcontrib>Sanjjushri, Varshini R ; Mahadevan, Rohith ; Bagiya, Lakshmi S ; Mathivanan Periasamy ; Raman, Raja CSP ; Lokesh, M</creatorcontrib><description>This research tackles the challenge of speckle noise in Synthetic Aperture Radar (SAR) space data, a prevalent issue that hampers the clarity and utility of SAR images. The study presents a comparative analysis of six distinct speckle noise reduction techniques: Lee Filtering, Frost Filtering, Kuan Filtering, Gaussian Filtering, Median Filtering, and Bilateral Filtering. These methods, selected for their unique approaches to noise reduction and image preservation, were applied to SAR datasets sourced from the Alaska Satellite Facility (ASF). The performance of each technique was evaluated using a comprehensive set of metrics, including Peak Signal-to-Noise Ratio (PSNR), Mean Squared Error (MSE), Structural Similarity Index (SSIM), Equivalent Number of Looks (ENL), and Speckle Suppression Index (SSI). The study concludes that both the Lee and Kuan Filters are effective, with the choice of filter depending on the specific application requirements for image quality and noise suppression. This work provides valuable insights into optimizing SAR image processing, with significant implications for remote sensing, environmental monitoring, and geological surveying.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data analysis ; Environmental monitoring ; Geological surveys ; Image filters ; Image processing ; Image quality ; Noise monitoring ; Noise reduction ; Radar data ; Radar imaging ; Remote monitoring ; Remote sensing ; Satellite imagery ; Signal to noise ratio ; Synthetic aperture radar</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Sanjjushri, Varshini R</creatorcontrib><creatorcontrib>Mahadevan, Rohith</creatorcontrib><creatorcontrib>Bagiya, Lakshmi S</creatorcontrib><creatorcontrib>Mathivanan Periasamy</creatorcontrib><creatorcontrib>Raman, Raja CSP</creatorcontrib><creatorcontrib>Lokesh, M</creatorcontrib><title>Speckle Noise Analysis for Synthetic Aperture Radar (SAR) Space Data</title><title>arXiv.org</title><description>This research tackles the challenge of speckle noise in Synthetic Aperture Radar (SAR) space data, a prevalent issue that hampers the clarity and utility of SAR images. The study presents a comparative analysis of six distinct speckle noise reduction techniques: Lee Filtering, Frost Filtering, Kuan Filtering, Gaussian Filtering, Median Filtering, and Bilateral Filtering. These methods, selected for their unique approaches to noise reduction and image preservation, were applied to SAR datasets sourced from the Alaska Satellite Facility (ASF). The performance of each technique was evaluated using a comprehensive set of metrics, including Peak Signal-to-Noise Ratio (PSNR), Mean Squared Error (MSE), Structural Similarity Index (SSIM), Equivalent Number of Looks (ENL), and Speckle Suppression Index (SSI). The study concludes that both the Lee and Kuan Filters are effective, with the choice of filter depending on the specific application requirements for image quality and noise suppression. This work provides valuable insights into optimizing SAR image processing, with significant implications for remote sensing, environmental monitoring, and geological surveying.</description><subject>Data analysis</subject><subject>Environmental monitoring</subject><subject>Geological surveys</subject><subject>Image filters</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Noise monitoring</subject><subject>Noise reduction</subject><subject>Radar data</subject><subject>Radar imaging</subject><subject>Remote monitoring</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Signal to noise ratio</subject><subject>Synthetic aperture radar</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjbEOgjAUABsTE4nyDy9x0YGktoA6EtE4OVB20uAjgoTWvjLw9zL4AU63XO4WLBBSHqJTLMSKhUQd51ykR5EkMmC5sli_e4SHaQkhG3Q_UUvQGAdqGvwLfVtDZtH50SEU-qkd7FRW7EFZXSPk2usNWza6Jwx_XLPt7Vpe7pF15jMi-aozo5vTVEl-jpNUzn_5n_UFoLk5HQ</recordid><startdate>20240816</startdate><enddate>20240816</enddate><creator>Sanjjushri, Varshini R</creator><creator>Mahadevan, Rohith</creator><creator>Bagiya, Lakshmi S</creator><creator>Mathivanan Periasamy</creator><creator>Raman, Raja CSP</creator><creator>Lokesh, M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240816</creationdate><title>Speckle Noise Analysis for Synthetic Aperture Radar (SAR) Space Data</title><author>Sanjjushri, Varshini R ; Mahadevan, Rohith ; Bagiya, Lakshmi S ; Mathivanan Periasamy ; Raman, Raja CSP ; Lokesh, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30945632673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data analysis</topic><topic>Environmental monitoring</topic><topic>Geological surveys</topic><topic>Image filters</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Noise monitoring</topic><topic>Noise reduction</topic><topic>Radar data</topic><topic>Radar imaging</topic><topic>Remote monitoring</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Signal to noise ratio</topic><topic>Synthetic aperture radar</topic><toplevel>online_resources</toplevel><creatorcontrib>Sanjjushri, Varshini R</creatorcontrib><creatorcontrib>Mahadevan, Rohith</creatorcontrib><creatorcontrib>Bagiya, Lakshmi S</creatorcontrib><creatorcontrib>Mathivanan Periasamy</creatorcontrib><creatorcontrib>Raman, Raja CSP</creatorcontrib><creatorcontrib>Lokesh, M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanjjushri, Varshini R</au><au>Mahadevan, Rohith</au><au>Bagiya, Lakshmi S</au><au>Mathivanan Periasamy</au><au>Raman, Raja CSP</au><au>Lokesh, M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Speckle Noise Analysis for Synthetic Aperture Radar (SAR) Space Data</atitle><jtitle>arXiv.org</jtitle><date>2024-08-16</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This research tackles the challenge of speckle noise in Synthetic Aperture Radar (SAR) space data, a prevalent issue that hampers the clarity and utility of SAR images. The study presents a comparative analysis of six distinct speckle noise reduction techniques: Lee Filtering, Frost Filtering, Kuan Filtering, Gaussian Filtering, Median Filtering, and Bilateral Filtering. These methods, selected for their unique approaches to noise reduction and image preservation, were applied to SAR datasets sourced from the Alaska Satellite Facility (ASF). The performance of each technique was evaluated using a comprehensive set of metrics, including Peak Signal-to-Noise Ratio (PSNR), Mean Squared Error (MSE), Structural Similarity Index (SSIM), Equivalent Number of Looks (ENL), and Speckle Suppression Index (SSI). The study concludes that both the Lee and Kuan Filters are effective, with the choice of filter depending on the specific application requirements for image quality and noise suppression. This work provides valuable insights into optimizing SAR image processing, with significant implications for remote sensing, environmental monitoring, and geological surveying.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3094563267 |
source | Open Access: Freely Accessible Journals by multiple vendors |
subjects | Data analysis Environmental monitoring Geological surveys Image filters Image processing Image quality Noise monitoring Noise reduction Radar data Radar imaging Remote monitoring Remote sensing Satellite imagery Signal to noise ratio Synthetic aperture radar |
title | Speckle Noise Analysis for Synthetic Aperture Radar (SAR) Space Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Speckle%20Noise%20Analysis%20for%20Synthetic%20Aperture%20Radar%20(SAR)%20Space%20Data&rft.jtitle=arXiv.org&rft.au=Sanjjushri,%20Varshini%20R&rft.date=2024-08-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3094563267%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3094563267&rft_id=info:pmid/&rfr_iscdi=true |