Stiffness Parameter Identification and Cutting-Force-Induced Error Compensation of an Adsorption Machining Robot
Owing to the advantages of excellent flexibility and accessibility, robots have attracted extensive attention in the field of machining. However, due to their relatively low rigidity, the cutting-force-induced error is the main obstacle to their application. To compensate for the error, an accurate...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2024-08, Vol.29 (4), p.2756-2767 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2767 |
---|---|
container_issue | 4 |
container_start_page | 2756 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 29 |
creator | Chen, Jiakai Xie, Fugui Liu, Xin-Jun |
description | Owing to the advantages of excellent flexibility and accessibility, robots have attracted extensive attention in the field of machining. However, due to their relatively low rigidity, the cutting-force-induced error is the main obstacle to their application. To compensate for the error, an accurate stiffness model is a premise, so it is required to identify the stiffness parameter through experiments, which remains a challenging issue for parallel robots because their component compliance has a complex effect on the robot stiffness due to their complex multiclosed-loop architecture. In this article, an adsorption machining robot with a parallel configuration is presented. An experiment-based stiffness parameter identification method is proposed to obtain an accurate stiffness model of the robot through experiment. To predict the external load acting on the robot end-effector when machining, an analytical cutting force model is established. With the stiffness model and cutting force model, by modifying the NC program offline based on the mirror compensation method, the cutting-force-induced error is compensated. Finally, machining comparison experiments are conducted on an S-shaped workpiece to verify the effectiveness of the proposed method. The results demonstrate that the dimensional accuracy of the surface is improved significantly with the proposed method. |
doi_str_mv | 10.1109/TMECH.2023.3329819 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3094517480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10324389</ieee_id><sourcerecordid>3094517480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-a708bb136c25318e71a4a2d0df4961ea07eb4da4ae38d006eb6ebc7ca8f1c2223</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhosoOKd_QLwoeN158rE1vRxlusGGohO8K2lyqh0uqUl64b83W3chBE54eZ5z4E2SWwITQqB42G4W5XJCgbIJY7QQpDhLRqTgJAPCP87jHwTLOGfTy-TK-x0AcAJklHRvoW0ag96nL9LJPQZ06UqjiXGrZGitSaXRadmH0JrP7NE6hdnK6F6hThfOWZeWdt-h8QNsm8inc-2t647BRqqv1kQ3fbW1DdfJRSO_Pd6c5jh5f1xsy2W2fn5alfN1pijPQyZzEHVN2EzRKSMCcyK5pBp0w4sZQQk51lzHDJnQADOs41O5kqIhilLKxsn9sLdz9qdHH6qd7Z2JJysGBZ-SnAuIFB0o5az3Dpuqc-1eut-KQHVotjo2Wx2arU7NRulukFpE_Ccwypko2B-LAnba</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094517480</pqid></control><display><type>article</type><title>Stiffness Parameter Identification and Cutting-Force-Induced Error Compensation of an Adsorption Machining Robot</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Jiakai ; Xie, Fugui ; Liu, Xin-Jun</creator><creatorcontrib>Chen, Jiakai ; Xie, Fugui ; Liu, Xin-Jun</creatorcontrib><description>Owing to the advantages of excellent flexibility and accessibility, robots have attracted extensive attention in the field of machining. However, due to their relatively low rigidity, the cutting-force-induced error is the main obstacle to their application. To compensate for the error, an accurate stiffness model is a premise, so it is required to identify the stiffness parameter through experiments, which remains a challenging issue for parallel robots because their component compliance has a complex effect on the robot stiffness due to their complex multiclosed-loop architecture. In this article, an adsorption machining robot with a parallel configuration is presented. An experiment-based stiffness parameter identification method is proposed to obtain an accurate stiffness model of the robot through experiment. To predict the external load acting on the robot end-effector when machining, an analytical cutting force model is established. With the stiffness model and cutting force model, by modifying the NC program offline based on the mirror compensation method, the cutting-force-induced error is compensated. Finally, machining comparison experiments are conducted on an S-shaped workpiece to verify the effectiveness of the proposed method. The results demonstrate that the dimensional accuracy of the surface is improved significantly with the proposed method.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2023.3329819</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adsorption ; Cutting force ; Cutting parameters ; Cutting-force-induced error compensation ; Deformation ; End effectors ; Error analysis ; Error compensation ; experiment-based identification method ; Identification methods ; Kinematics ; Machining ; machining robots ; Parallel robots ; Parameter identification ; Parameter modification ; parametric stiffness model ; Robots ; Solid modeling ; Stiffness ; Workpieces</subject><ispartof>IEEE/ASME transactions on mechatronics, 2024-08, Vol.29 (4), p.2756-2767</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-a708bb136c25318e71a4a2d0df4961ea07eb4da4ae38d006eb6ebc7ca8f1c2223</cites><orcidid>0000-0001-8252-8367 ; 0000-0001-7049-2010 ; 0009-0007-0121-0236</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10324389$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10324389$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Jiakai</creatorcontrib><creatorcontrib>Xie, Fugui</creatorcontrib><creatorcontrib>Liu, Xin-Jun</creatorcontrib><title>Stiffness Parameter Identification and Cutting-Force-Induced Error Compensation of an Adsorption Machining Robot</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>Owing to the advantages of excellent flexibility and accessibility, robots have attracted extensive attention in the field of machining. However, due to their relatively low rigidity, the cutting-force-induced error is the main obstacle to their application. To compensate for the error, an accurate stiffness model is a premise, so it is required to identify the stiffness parameter through experiments, which remains a challenging issue for parallel robots because their component compliance has a complex effect on the robot stiffness due to their complex multiclosed-loop architecture. In this article, an adsorption machining robot with a parallel configuration is presented. An experiment-based stiffness parameter identification method is proposed to obtain an accurate stiffness model of the robot through experiment. To predict the external load acting on the robot end-effector when machining, an analytical cutting force model is established. With the stiffness model and cutting force model, by modifying the NC program offline based on the mirror compensation method, the cutting-force-induced error is compensated. Finally, machining comparison experiments are conducted on an S-shaped workpiece to verify the effectiveness of the proposed method. The results demonstrate that the dimensional accuracy of the surface is improved significantly with the proposed method.</description><subject>Adsorption</subject><subject>Cutting force</subject><subject>Cutting parameters</subject><subject>Cutting-force-induced error compensation</subject><subject>Deformation</subject><subject>End effectors</subject><subject>Error analysis</subject><subject>Error compensation</subject><subject>experiment-based identification method</subject><subject>Identification methods</subject><subject>Kinematics</subject><subject>Machining</subject><subject>machining robots</subject><subject>Parallel robots</subject><subject>Parameter identification</subject><subject>Parameter modification</subject><subject>parametric stiffness model</subject><subject>Robots</subject><subject>Solid modeling</subject><subject>Stiffness</subject><subject>Workpieces</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhosoOKd_QLwoeN158rE1vRxlusGGohO8K2lyqh0uqUl64b83W3chBE54eZ5z4E2SWwITQqB42G4W5XJCgbIJY7QQpDhLRqTgJAPCP87jHwTLOGfTy-TK-x0AcAJklHRvoW0ag96nL9LJPQZ06UqjiXGrZGitSaXRadmH0JrP7NE6hdnK6F6hThfOWZeWdt-h8QNsm8inc-2t647BRqqv1kQ3fbW1DdfJRSO_Pd6c5jh5f1xsy2W2fn5alfN1pijPQyZzEHVN2EzRKSMCcyK5pBp0w4sZQQk51lzHDJnQADOs41O5kqIhilLKxsn9sLdz9qdHH6qd7Z2JJysGBZ-SnAuIFB0o5az3Dpuqc-1eut-KQHVotjo2Wx2arU7NRulukFpE_Ccwypko2B-LAnba</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Chen, Jiakai</creator><creator>Xie, Fugui</creator><creator>Liu, Xin-Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8252-8367</orcidid><orcidid>https://orcid.org/0000-0001-7049-2010</orcidid><orcidid>https://orcid.org/0009-0007-0121-0236</orcidid></search><sort><creationdate>20240801</creationdate><title>Stiffness Parameter Identification and Cutting-Force-Induced Error Compensation of an Adsorption Machining Robot</title><author>Chen, Jiakai ; Xie, Fugui ; Liu, Xin-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-a708bb136c25318e71a4a2d0df4961ea07eb4da4ae38d006eb6ebc7ca8f1c2223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Cutting force</topic><topic>Cutting parameters</topic><topic>Cutting-force-induced error compensation</topic><topic>Deformation</topic><topic>End effectors</topic><topic>Error analysis</topic><topic>Error compensation</topic><topic>experiment-based identification method</topic><topic>Identification methods</topic><topic>Kinematics</topic><topic>Machining</topic><topic>machining robots</topic><topic>Parallel robots</topic><topic>Parameter identification</topic><topic>Parameter modification</topic><topic>parametric stiffness model</topic><topic>Robots</topic><topic>Solid modeling</topic><topic>Stiffness</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jiakai</creatorcontrib><creatorcontrib>Xie, Fugui</creatorcontrib><creatorcontrib>Liu, Xin-Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Jiakai</au><au>Xie, Fugui</au><au>Liu, Xin-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stiffness Parameter Identification and Cutting-Force-Induced Error Compensation of an Adsorption Machining Robot</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>29</volume><issue>4</issue><spage>2756</spage><epage>2767</epage><pages>2756-2767</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>Owing to the advantages of excellent flexibility and accessibility, robots have attracted extensive attention in the field of machining. However, due to their relatively low rigidity, the cutting-force-induced error is the main obstacle to their application. To compensate for the error, an accurate stiffness model is a premise, so it is required to identify the stiffness parameter through experiments, which remains a challenging issue for parallel robots because their component compliance has a complex effect on the robot stiffness due to their complex multiclosed-loop architecture. In this article, an adsorption machining robot with a parallel configuration is presented. An experiment-based stiffness parameter identification method is proposed to obtain an accurate stiffness model of the robot through experiment. To predict the external load acting on the robot end-effector when machining, an analytical cutting force model is established. With the stiffness model and cutting force model, by modifying the NC program offline based on the mirror compensation method, the cutting-force-induced error is compensated. Finally, machining comparison experiments are conducted on an S-shaped workpiece to verify the effectiveness of the proposed method. The results demonstrate that the dimensional accuracy of the surface is improved significantly with the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2023.3329819</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8252-8367</orcidid><orcidid>https://orcid.org/0000-0001-7049-2010</orcidid><orcidid>https://orcid.org/0009-0007-0121-0236</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2024-08, Vol.29 (4), p.2756-2767 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_proquest_journals_3094517480 |
source | IEEE Electronic Library (IEL) |
subjects | Adsorption Cutting force Cutting parameters Cutting-force-induced error compensation Deformation End effectors Error analysis Error compensation experiment-based identification method Identification methods Kinematics Machining machining robots Parallel robots Parameter identification Parameter modification parametric stiffness model Robots Solid modeling Stiffness Workpieces |
title | Stiffness Parameter Identification and Cutting-Force-Induced Error Compensation of an Adsorption Machining Robot |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stiffness%20Parameter%20Identification%20and%20Cutting-Force-Induced%20Error%20Compensation%20of%20an%20Adsorption%20Machining%20Robot&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Chen,%20Jiakai&rft.date=2024-08-01&rft.volume=29&rft.issue=4&rft.spage=2756&rft.epage=2767&rft.pages=2756-2767&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2023.3329819&rft_dat=%3Cproquest_RIE%3E3094517480%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3094517480&rft_id=info:pmid/&rft_ieee_id=10324389&rfr_iscdi=true |