Stiffness Parameter Identification and Cutting-Force-Induced Error Compensation of an Adsorption Machining Robot

Owing to the advantages of excellent flexibility and accessibility, robots have attracted extensive attention in the field of machining. However, due to their relatively low rigidity, the cutting-force-induced error is the main obstacle to their application. To compensate for the error, an accurate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2024-08, Vol.29 (4), p.2756-2767
Hauptverfasser: Chen, Jiakai, Xie, Fugui, Liu, Xin-Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2767
container_issue 4
container_start_page 2756
container_title IEEE/ASME transactions on mechatronics
container_volume 29
creator Chen, Jiakai
Xie, Fugui
Liu, Xin-Jun
description Owing to the advantages of excellent flexibility and accessibility, robots have attracted extensive attention in the field of machining. However, due to their relatively low rigidity, the cutting-force-induced error is the main obstacle to their application. To compensate for the error, an accurate stiffness model is a premise, so it is required to identify the stiffness parameter through experiments, which remains a challenging issue for parallel robots because their component compliance has a complex effect on the robot stiffness due to their complex multiclosed-loop architecture. In this article, an adsorption machining robot with a parallel configuration is presented. An experiment-based stiffness parameter identification method is proposed to obtain an accurate stiffness model of the robot through experiment. To predict the external load acting on the robot end-effector when machining, an analytical cutting force model is established. With the stiffness model and cutting force model, by modifying the NC program offline based on the mirror compensation method, the cutting-force-induced error is compensated. Finally, machining comparison experiments are conducted on an S-shaped workpiece to verify the effectiveness of the proposed method. The results demonstrate that the dimensional accuracy of the surface is improved significantly with the proposed method.
doi_str_mv 10.1109/TMECH.2023.3329819
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3094517480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10324389</ieee_id><sourcerecordid>3094517480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-a708bb136c25318e71a4a2d0df4961ea07eb4da4ae38d006eb6ebc7ca8f1c2223</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhosoOKd_QLwoeN158rE1vRxlusGGohO8K2lyqh0uqUl64b83W3chBE54eZ5z4E2SWwITQqB42G4W5XJCgbIJY7QQpDhLRqTgJAPCP87jHwTLOGfTy-TK-x0AcAJklHRvoW0ag96nL9LJPQZ06UqjiXGrZGitSaXRadmH0JrP7NE6hdnK6F6hThfOWZeWdt-h8QNsm8inc-2t647BRqqv1kQ3fbW1DdfJRSO_Pd6c5jh5f1xsy2W2fn5alfN1pijPQyZzEHVN2EzRKSMCcyK5pBp0w4sZQQk51lzHDJnQADOs41O5kqIhilLKxsn9sLdz9qdHH6qd7Z2JJysGBZ-SnAuIFB0o5az3Dpuqc-1eut-KQHVotjo2Wx2arU7NRulukFpE_Ccwypko2B-LAnba</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094517480</pqid></control><display><type>article</type><title>Stiffness Parameter Identification and Cutting-Force-Induced Error Compensation of an Adsorption Machining Robot</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Jiakai ; Xie, Fugui ; Liu, Xin-Jun</creator><creatorcontrib>Chen, Jiakai ; Xie, Fugui ; Liu, Xin-Jun</creatorcontrib><description>Owing to the advantages of excellent flexibility and accessibility, robots have attracted extensive attention in the field of machining. However, due to their relatively low rigidity, the cutting-force-induced error is the main obstacle to their application. To compensate for the error, an accurate stiffness model is a premise, so it is required to identify the stiffness parameter through experiments, which remains a challenging issue for parallel robots because their component compliance has a complex effect on the robot stiffness due to their complex multiclosed-loop architecture. In this article, an adsorption machining robot with a parallel configuration is presented. An experiment-based stiffness parameter identification method is proposed to obtain an accurate stiffness model of the robot through experiment. To predict the external load acting on the robot end-effector when machining, an analytical cutting force model is established. With the stiffness model and cutting force model, by modifying the NC program offline based on the mirror compensation method, the cutting-force-induced error is compensated. Finally, machining comparison experiments are conducted on an S-shaped workpiece to verify the effectiveness of the proposed method. The results demonstrate that the dimensional accuracy of the surface is improved significantly with the proposed method.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2023.3329819</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adsorption ; Cutting force ; Cutting parameters ; Cutting-force-induced error compensation ; Deformation ; End effectors ; Error analysis ; Error compensation ; experiment-based identification method ; Identification methods ; Kinematics ; Machining ; machining robots ; Parallel robots ; Parameter identification ; Parameter modification ; parametric stiffness model ; Robots ; Solid modeling ; Stiffness ; Workpieces</subject><ispartof>IEEE/ASME transactions on mechatronics, 2024-08, Vol.29 (4), p.2756-2767</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-a708bb136c25318e71a4a2d0df4961ea07eb4da4ae38d006eb6ebc7ca8f1c2223</cites><orcidid>0000-0001-8252-8367 ; 0000-0001-7049-2010 ; 0009-0007-0121-0236</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10324389$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10324389$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Jiakai</creatorcontrib><creatorcontrib>Xie, Fugui</creatorcontrib><creatorcontrib>Liu, Xin-Jun</creatorcontrib><title>Stiffness Parameter Identification and Cutting-Force-Induced Error Compensation of an Adsorption Machining Robot</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>Owing to the advantages of excellent flexibility and accessibility, robots have attracted extensive attention in the field of machining. However, due to their relatively low rigidity, the cutting-force-induced error is the main obstacle to their application. To compensate for the error, an accurate stiffness model is a premise, so it is required to identify the stiffness parameter through experiments, which remains a challenging issue for parallel robots because their component compliance has a complex effect on the robot stiffness due to their complex multiclosed-loop architecture. In this article, an adsorption machining robot with a parallel configuration is presented. An experiment-based stiffness parameter identification method is proposed to obtain an accurate stiffness model of the robot through experiment. To predict the external load acting on the robot end-effector when machining, an analytical cutting force model is established. With the stiffness model and cutting force model, by modifying the NC program offline based on the mirror compensation method, the cutting-force-induced error is compensated. Finally, machining comparison experiments are conducted on an S-shaped workpiece to verify the effectiveness of the proposed method. The results demonstrate that the dimensional accuracy of the surface is improved significantly with the proposed method.</description><subject>Adsorption</subject><subject>Cutting force</subject><subject>Cutting parameters</subject><subject>Cutting-force-induced error compensation</subject><subject>Deformation</subject><subject>End effectors</subject><subject>Error analysis</subject><subject>Error compensation</subject><subject>experiment-based identification method</subject><subject>Identification methods</subject><subject>Kinematics</subject><subject>Machining</subject><subject>machining robots</subject><subject>Parallel robots</subject><subject>Parameter identification</subject><subject>Parameter modification</subject><subject>parametric stiffness model</subject><subject>Robots</subject><subject>Solid modeling</subject><subject>Stiffness</subject><subject>Workpieces</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhosoOKd_QLwoeN158rE1vRxlusGGohO8K2lyqh0uqUl64b83W3chBE54eZ5z4E2SWwITQqB42G4W5XJCgbIJY7QQpDhLRqTgJAPCP87jHwTLOGfTy-TK-x0AcAJklHRvoW0ag96nL9LJPQZ06UqjiXGrZGitSaXRadmH0JrP7NE6hdnK6F6hThfOWZeWdt-h8QNsm8inc-2t647BRqqv1kQ3fbW1DdfJRSO_Pd6c5jh5f1xsy2W2fn5alfN1pijPQyZzEHVN2EzRKSMCcyK5pBp0w4sZQQk51lzHDJnQADOs41O5kqIhilLKxsn9sLdz9qdHH6qd7Z2JJysGBZ-SnAuIFB0o5az3Dpuqc-1eut-KQHVotjo2Wx2arU7NRulukFpE_Ccwypko2B-LAnba</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Chen, Jiakai</creator><creator>Xie, Fugui</creator><creator>Liu, Xin-Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8252-8367</orcidid><orcidid>https://orcid.org/0000-0001-7049-2010</orcidid><orcidid>https://orcid.org/0009-0007-0121-0236</orcidid></search><sort><creationdate>20240801</creationdate><title>Stiffness Parameter Identification and Cutting-Force-Induced Error Compensation of an Adsorption Machining Robot</title><author>Chen, Jiakai ; Xie, Fugui ; Liu, Xin-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-a708bb136c25318e71a4a2d0df4961ea07eb4da4ae38d006eb6ebc7ca8f1c2223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Cutting force</topic><topic>Cutting parameters</topic><topic>Cutting-force-induced error compensation</topic><topic>Deformation</topic><topic>End effectors</topic><topic>Error analysis</topic><topic>Error compensation</topic><topic>experiment-based identification method</topic><topic>Identification methods</topic><topic>Kinematics</topic><topic>Machining</topic><topic>machining robots</topic><topic>Parallel robots</topic><topic>Parameter identification</topic><topic>Parameter modification</topic><topic>parametric stiffness model</topic><topic>Robots</topic><topic>Solid modeling</topic><topic>Stiffness</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jiakai</creatorcontrib><creatorcontrib>Xie, Fugui</creatorcontrib><creatorcontrib>Liu, Xin-Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Jiakai</au><au>Xie, Fugui</au><au>Liu, Xin-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stiffness Parameter Identification and Cutting-Force-Induced Error Compensation of an Adsorption Machining Robot</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>29</volume><issue>4</issue><spage>2756</spage><epage>2767</epage><pages>2756-2767</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>Owing to the advantages of excellent flexibility and accessibility, robots have attracted extensive attention in the field of machining. However, due to their relatively low rigidity, the cutting-force-induced error is the main obstacle to their application. To compensate for the error, an accurate stiffness model is a premise, so it is required to identify the stiffness parameter through experiments, which remains a challenging issue for parallel robots because their component compliance has a complex effect on the robot stiffness due to their complex multiclosed-loop architecture. In this article, an adsorption machining robot with a parallel configuration is presented. An experiment-based stiffness parameter identification method is proposed to obtain an accurate stiffness model of the robot through experiment. To predict the external load acting on the robot end-effector when machining, an analytical cutting force model is established. With the stiffness model and cutting force model, by modifying the NC program offline based on the mirror compensation method, the cutting-force-induced error is compensated. Finally, machining comparison experiments are conducted on an S-shaped workpiece to verify the effectiveness of the proposed method. The results demonstrate that the dimensional accuracy of the surface is improved significantly with the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2023.3329819</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8252-8367</orcidid><orcidid>https://orcid.org/0000-0001-7049-2010</orcidid><orcidid>https://orcid.org/0009-0007-0121-0236</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2024-08, Vol.29 (4), p.2756-2767
issn 1083-4435
1941-014X
language eng
recordid cdi_proquest_journals_3094517480
source IEEE Electronic Library (IEL)
subjects Adsorption
Cutting force
Cutting parameters
Cutting-force-induced error compensation
Deformation
End effectors
Error analysis
Error compensation
experiment-based identification method
Identification methods
Kinematics
Machining
machining robots
Parallel robots
Parameter identification
Parameter modification
parametric stiffness model
Robots
Solid modeling
Stiffness
Workpieces
title Stiffness Parameter Identification and Cutting-Force-Induced Error Compensation of an Adsorption Machining Robot
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stiffness%20Parameter%20Identification%20and%20Cutting-Force-Induced%20Error%20Compensation%20of%20an%20Adsorption%20Machining%20Robot&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Chen,%20Jiakai&rft.date=2024-08-01&rft.volume=29&rft.issue=4&rft.spage=2756&rft.epage=2767&rft.pages=2756-2767&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2023.3329819&rft_dat=%3Cproquest_RIE%3E3094517480%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3094517480&rft_id=info:pmid/&rft_ieee_id=10324389&rfr_iscdi=true