Thermal and magnetic field structure of near-equatorial coronal holes

Context. Coronal holes are low-density and unipolar magnetic field structures in the solar corona that trigger geomagnetic disturbances on the Earth. Hence, it is important to understand the genesis and evolutionary behavior of these coronal activity features during their passage across the solar di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2024-08, Vol.688, p.A35
Hauptverfasser: Hegde, M., Hiremath, K. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page A35
container_title Astronomy and astrophysics (Berlin)
container_volume 688
creator Hegde, M.
Hiremath, K. M.
description Context. Coronal holes are low-density and unipolar magnetic field structures in the solar corona that trigger geomagnetic disturbances on the Earth. Hence, it is important to understand the genesis and evolutionary behavior of these coronal activity features during their passage across the solar disk. Aims. We study the day-to-day latitudinal variations of thermal and magnetic field structures of near-equatorial coronal holes. For this purpose, eight years of full-disk SOHO/EIT 195 Å calibrated images were used. Methods. Using the response curves of the SOHO/EIT channels and assuming thermodynamic equilibrium, we estimated the temperature structure of coronal holes. From the latitudinal variation in the magnetic pressure, we inferred the magnitude of the magnetic field structure of coronal holes. Results. Except for the temperature T , we find that the variations in the average photon flux F , in the radiative energy E , in the area A , and in the magnitude of the magnetic field structure | B | of coronal holes depend on latitude. The typical average values of the estimated physical parameters are A  ∼ 3.8(±0.5)×10 20 cm 2 , F  ∼ 2.3(±0.2)×10 13 photons cm −2 s −1 , E  ∼ 2.32(±0.5)×10 3 ergs cm −2 s −1 , T  ∼ 0.94(±0.1)×10 6 K and | B |∼0.01(±0.001) G. Conclusions. When coronal holes are anchored in the convection zone, these activity features would be expected to rotate differentially. The thermal wind balance and isorotation of coronal holes with the solar plasma therefore implies a measurable temperature difference between the equator and the two poles. Contrary to this fact, the variation in the thermal structure of near-equatorial coronal holes is independent of latitude, which leads to the conclusion that coronal holes must rotate rigidly and are likely to be initially anchored below the tachocline. This confirms our previous study.
doi_str_mv 10.1051/0004-6361/202347082
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3094487279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3094487279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c157t-2b97322b61825f1c537d87572c9f127780a469eab7cc6c253b5d586c06bcc76c3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRsFZ_gZuA69j5fpOllGqFgpu6HiYvE5uSZNqZZOG_N6HS1eXC4XI5hDwz-sqoYitKqcy10GzFKRcSqOE3ZMGk4DkFqW_J4krck4eUjlPlzIgF2ewPPnauzVxfZZ376f3QYFY3vq2yNMQRhzH6LNRZ713M_Xl0Q4jNxGOIoZ_yEFqfHsld7drkn_5zSb7fN_v1Nt99fXyu33Y5MgVDzssCBOelZoarmqESUBlQwLGoGQcw1EldeFcCokauRKkqZTRSXSKCRrEkL5fdUwzn0afBHsMYpxvJClpIaYBDMVHiQmEMKUVf21NsOhd_LaN29mVnG3a2Ya--xB_5K1xR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094487279</pqid></control><display><type>article</type><title>Thermal and magnetic field structure of near-equatorial coronal holes</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>EDP Sciences</source><creator>Hegde, M. ; Hiremath, K. M.</creator><creatorcontrib>Hegde, M. ; Hiremath, K. M.</creatorcontrib><description>Context. Coronal holes are low-density and unipolar magnetic field structures in the solar corona that trigger geomagnetic disturbances on the Earth. Hence, it is important to understand the genesis and evolutionary behavior of these coronal activity features during their passage across the solar disk. Aims. We study the day-to-day latitudinal variations of thermal and magnetic field structures of near-equatorial coronal holes. For this purpose, eight years of full-disk SOHO/EIT 195 Å calibrated images were used. Methods. Using the response curves of the SOHO/EIT channels and assuming thermodynamic equilibrium, we estimated the temperature structure of coronal holes. From the latitudinal variation in the magnetic pressure, we inferred the magnitude of the magnetic field structure of coronal holes. Results. Except for the temperature T , we find that the variations in the average photon flux F , in the radiative energy E , in the area A , and in the magnitude of the magnetic field structure | B | of coronal holes depend on latitude. The typical average values of the estimated physical parameters are A  ∼ 3.8(±0.5)×10 20 cm 2 , F  ∼ 2.3(±0.2)×10 13 photons cm −2 s −1 , E  ∼ 2.32(±0.5)×10 3 ergs cm −2 s −1 , T  ∼ 0.94(±0.1)×10 6 K and | B |∼0.01(±0.001) G. Conclusions. When coronal holes are anchored in the convection zone, these activity features would be expected to rotate differentially. The thermal wind balance and isorotation of coronal holes with the solar plasma therefore implies a measurable temperature difference between the equator and the two poles. Contrary to this fact, the variation in the thermal structure of near-equatorial coronal holes is independent of latitude, which leads to the conclusion that coronal holes must rotate rigidly and are likely to be initially anchored below the tachocline. This confirms our previous study.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/202347082</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Coronal holes ; Magnetic fields ; Parameter estimation ; Photons ; Physical properties ; Plasma convection ; Solar corona ; Solar magnetic field ; Temperature gradients ; Thermodynamic equilibrium</subject><ispartof>Astronomy and astrophysics (Berlin), 2024-08, Vol.688, p.A35</ispartof><rights>2024. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c157t-2b97322b61825f1c537d87572c9f127780a469eab7cc6c253b5d586c06bcc76c3</cites><orcidid>0000-0002-8163-3322</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,3714,27905,27906</link.rule.ids></links><search><creatorcontrib>Hegde, M.</creatorcontrib><creatorcontrib>Hiremath, K. M.</creatorcontrib><title>Thermal and magnetic field structure of near-equatorial coronal holes</title><title>Astronomy and astrophysics (Berlin)</title><description>Context. Coronal holes are low-density and unipolar magnetic field structures in the solar corona that trigger geomagnetic disturbances on the Earth. Hence, it is important to understand the genesis and evolutionary behavior of these coronal activity features during their passage across the solar disk. Aims. We study the day-to-day latitudinal variations of thermal and magnetic field structures of near-equatorial coronal holes. For this purpose, eight years of full-disk SOHO/EIT 195 Å calibrated images were used. Methods. Using the response curves of the SOHO/EIT channels and assuming thermodynamic equilibrium, we estimated the temperature structure of coronal holes. From the latitudinal variation in the magnetic pressure, we inferred the magnitude of the magnetic field structure of coronal holes. Results. Except for the temperature T , we find that the variations in the average photon flux F , in the radiative energy E , in the area A , and in the magnitude of the magnetic field structure | B | of coronal holes depend on latitude. The typical average values of the estimated physical parameters are A  ∼ 3.8(±0.5)×10 20 cm 2 , F  ∼ 2.3(±0.2)×10 13 photons cm −2 s −1 , E  ∼ 2.32(±0.5)×10 3 ergs cm −2 s −1 , T  ∼ 0.94(±0.1)×10 6 K and | B |∼0.01(±0.001) G. Conclusions. When coronal holes are anchored in the convection zone, these activity features would be expected to rotate differentially. The thermal wind balance and isorotation of coronal holes with the solar plasma therefore implies a measurable temperature difference between the equator and the two poles. Contrary to this fact, the variation in the thermal structure of near-equatorial coronal holes is independent of latitude, which leads to the conclusion that coronal holes must rotate rigidly and are likely to be initially anchored below the tachocline. This confirms our previous study.</description><subject>Coronal holes</subject><subject>Magnetic fields</subject><subject>Parameter estimation</subject><subject>Photons</subject><subject>Physical properties</subject><subject>Plasma convection</subject><subject>Solar corona</subject><subject>Solar magnetic field</subject><subject>Temperature gradients</subject><subject>Thermodynamic equilibrium</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AURQdRsFZ_gZuA69j5fpOllGqFgpu6HiYvE5uSZNqZZOG_N6HS1eXC4XI5hDwz-sqoYitKqcy10GzFKRcSqOE3ZMGk4DkFqW_J4krck4eUjlPlzIgF2ewPPnauzVxfZZ376f3QYFY3vq2yNMQRhzH6LNRZ713M_Xl0Q4jNxGOIoZ_yEFqfHsld7drkn_5zSb7fN_v1Nt99fXyu33Y5MgVDzssCBOelZoarmqESUBlQwLGoGQcw1EldeFcCokauRKkqZTRSXSKCRrEkL5fdUwzn0afBHsMYpxvJClpIaYBDMVHiQmEMKUVf21NsOhd_LaN29mVnG3a2Ya--xB_5K1xR</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Hegde, M.</creator><creator>Hiremath, K. M.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8163-3322</orcidid></search><sort><creationdate>20240801</creationdate><title>Thermal and magnetic field structure of near-equatorial coronal holes</title><author>Hegde, M. ; Hiremath, K. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c157t-2b97322b61825f1c537d87572c9f127780a469eab7cc6c253b5d586c06bcc76c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coronal holes</topic><topic>Magnetic fields</topic><topic>Parameter estimation</topic><topic>Photons</topic><topic>Physical properties</topic><topic>Plasma convection</topic><topic>Solar corona</topic><topic>Solar magnetic field</topic><topic>Temperature gradients</topic><topic>Thermodynamic equilibrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hegde, M.</creatorcontrib><creatorcontrib>Hiremath, K. M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hegde, M.</au><au>Hiremath, K. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal and magnetic field structure of near-equatorial coronal holes</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>688</volume><spage>A35</spage><pages>A35-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>Context. Coronal holes are low-density and unipolar magnetic field structures in the solar corona that trigger geomagnetic disturbances on the Earth. Hence, it is important to understand the genesis and evolutionary behavior of these coronal activity features during their passage across the solar disk. Aims. We study the day-to-day latitudinal variations of thermal and magnetic field structures of near-equatorial coronal holes. For this purpose, eight years of full-disk SOHO/EIT 195 Å calibrated images were used. Methods. Using the response curves of the SOHO/EIT channels and assuming thermodynamic equilibrium, we estimated the temperature structure of coronal holes. From the latitudinal variation in the magnetic pressure, we inferred the magnitude of the magnetic field structure of coronal holes. Results. Except for the temperature T , we find that the variations in the average photon flux F , in the radiative energy E , in the area A , and in the magnitude of the magnetic field structure | B | of coronal holes depend on latitude. The typical average values of the estimated physical parameters are A  ∼ 3.8(±0.5)×10 20 cm 2 , F  ∼ 2.3(±0.2)×10 13 photons cm −2 s −1 , E  ∼ 2.32(±0.5)×10 3 ergs cm −2 s −1 , T  ∼ 0.94(±0.1)×10 6 K and | B |∼0.01(±0.001) G. Conclusions. When coronal holes are anchored in the convection zone, these activity features would be expected to rotate differentially. The thermal wind balance and isorotation of coronal holes with the solar plasma therefore implies a measurable temperature difference between the equator and the two poles. Contrary to this fact, the variation in the thermal structure of near-equatorial coronal holes is independent of latitude, which leads to the conclusion that coronal holes must rotate rigidly and are likely to be initially anchored below the tachocline. This confirms our previous study.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/202347082</doi><orcidid>https://orcid.org/0000-0002-8163-3322</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2024-08, Vol.688, p.A35
issn 0004-6361
1432-0746
language eng
recordid cdi_proquest_journals_3094487279
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; EDP Sciences
subjects Coronal holes
Magnetic fields
Parameter estimation
Photons
Physical properties
Plasma convection
Solar corona
Solar magnetic field
Temperature gradients
Thermodynamic equilibrium
title Thermal and magnetic field structure of near-equatorial coronal holes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A31%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20and%20magnetic%20field%20structure%20of%20near-equatorial%20coronal%20holes&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Hegde,%20M.&rft.date=2024-08-01&rft.volume=688&rft.spage=A35&rft.pages=A35-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202347082&rft_dat=%3Cproquest_cross%3E3094487279%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3094487279&rft_id=info:pmid/&rfr_iscdi=true