Btda: basis transformation based distribution alignment for imbalanced semi-supervised learning

Semi-supervised learning (SSL) employs unlabeled data with limited labeled samples to enhance deep networks, but imbalance degrades performance due to biased pseudo-labels skewing decision boundaries. To address this challenge, we propose two optimization conditions inspired by our theoretical analy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of machine learning and cybernetics 2024-09, Vol.15 (9), p.3829-3845
Hauptverfasser: Ye, Jinhuang, Gao, Xiaozhi, Li, Zuoyong, Wu, Jiawei, Xu, Xiaofeng, Zheng, Xianghan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!