The prize-collecting single machine scheduling with bounds and penalties

This study investigates the prize-collecting single machine scheduling with bounds and penalties (PC-SMS-BP). In this problem, a set of n jobs and a single machine are considered, where each job J j has a processing time p j , a profit π j and a rejection penalty w j . The upper bound on the process...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial optimization 2024-09, Vol.48 (2), Article 12
Hauptverfasser: Hu, Guojun, Pan, Pengxiang, Liu, Suding, Yang, Ping, Xie, Runtao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of combinatorial optimization
container_volume 48
creator Hu, Guojun
Pan, Pengxiang
Liu, Suding
Yang, Ping
Xie, Runtao
description This study investigates the prize-collecting single machine scheduling with bounds and penalties (PC-SMS-BP). In this problem, a set of n jobs and a single machine are considered, where each job J j has a processing time p j , a profit π j and a rejection penalty w j . The upper bound on the processing number is U . The objective of this study is to find a feasible schedule that minimizes the makespan of the accepted jobs and the total rejection penalty of the rejected jobs under the condition that the number of the accepted jobs does not exceed a given threshold U while the total profit of the accepted jobs does not fall below a specified profit bound Π . We first demonstrate that this problem is NP -hard. Then, a pseudo-polynomial time dynamic programming algorithm and a fully polynomial time approximation scheme (FPTAS) are proposed. Finally, numerical experiments are conducted to compare the effectiveness of the two proposed algorithms.
doi_str_mv 10.1007/s10878-024-01203-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3093887014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093887014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-8fb7800459c47e647cd3e1f39d0041b185725d29335fa0569bb4e0d8f3402eb03</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoHPAU8RydfTXqUxS9Y8LKeQ5tMt1267dq0iP56s1bw5mXmMfPeY-YRcs3hlgOYu8jBGstAKAZcgGRwQhZcG8mEtdlpwtIKluWgz8lFjDsASFgtyPOmRnoYmi9kvm9b9GPTbWlMpUW6L3zddEijrzFM7XHz0Yw1LfupC5EWXaAH7Ip2bDBekrOqaCNe_fYleXt82Kye2fr16WV1v2ZeAIzMVqWxAErnXhnMlPFBIq9kHtKQl9xqI3QQuZS6KkBneVkqhGArqUBgCXJJbmbfw9C_TxhHt-unIR0RnYRcWmuAq8QSM8sPfYwDVi79uC-GT8fBHRNzc2IuJeZ-EnNHazmLYiJ3Wxz-rP9RfQOgfW1h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093887014</pqid></control><display><type>article</type><title>The prize-collecting single machine scheduling with bounds and penalties</title><source>SpringerNature Journals</source><creator>Hu, Guojun ; Pan, Pengxiang ; Liu, Suding ; Yang, Ping ; Xie, Runtao</creator><creatorcontrib>Hu, Guojun ; Pan, Pengxiang ; Liu, Suding ; Yang, Ping ; Xie, Runtao</creatorcontrib><description>This study investigates the prize-collecting single machine scheduling with bounds and penalties (PC-SMS-BP). In this problem, a set of n jobs and a single machine are considered, where each job J j has a processing time p j , a profit π j and a rejection penalty w j . The upper bound on the processing number is U . The objective of this study is to find a feasible schedule that minimizes the makespan of the accepted jobs and the total rejection penalty of the rejected jobs under the condition that the number of the accepted jobs does not exceed a given threshold U while the total profit of the accepted jobs does not fall below a specified profit bound Π . We first demonstrate that this problem is NP -hard. Then, a pseudo-polynomial time dynamic programming algorithm and a fully polynomial time approximation scheme (FPTAS) are proposed. Finally, numerical experiments are conducted to compare the effectiveness of the two proposed algorithms.</description><identifier>ISSN: 1382-6905</identifier><identifier>EISSN: 1573-2886</identifier><identifier>DOI: 10.1007/s10878-024-01203-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Combinatorics ; Convex and Discrete Geometry ; Dynamic programming ; Fines &amp; penalties ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Polynomials ; Rejection ; Scheduling ; Theory of Computation ; Upper bounds</subject><ispartof>Journal of combinatorial optimization, 2024-09, Vol.48 (2), Article 12</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-8fb7800459c47e647cd3e1f39d0041b185725d29335fa0569bb4e0d8f3402eb03</cites><orcidid>0009-0001-8267-8848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10878-024-01203-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10878-024-01203-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hu, Guojun</creatorcontrib><creatorcontrib>Pan, Pengxiang</creatorcontrib><creatorcontrib>Liu, Suding</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Xie, Runtao</creatorcontrib><title>The prize-collecting single machine scheduling with bounds and penalties</title><title>Journal of combinatorial optimization</title><addtitle>J Comb Optim</addtitle><description>This study investigates the prize-collecting single machine scheduling with bounds and penalties (PC-SMS-BP). In this problem, a set of n jobs and a single machine are considered, where each job J j has a processing time p j , a profit π j and a rejection penalty w j . The upper bound on the processing number is U . The objective of this study is to find a feasible schedule that minimizes the makespan of the accepted jobs and the total rejection penalty of the rejected jobs under the condition that the number of the accepted jobs does not exceed a given threshold U while the total profit of the accepted jobs does not fall below a specified profit bound Π . We first demonstrate that this problem is NP -hard. Then, a pseudo-polynomial time dynamic programming algorithm and a fully polynomial time approximation scheme (FPTAS) are proposed. Finally, numerical experiments are conducted to compare the effectiveness of the two proposed algorithms.</description><subject>Algorithms</subject><subject>Combinatorics</subject><subject>Convex and Discrete Geometry</subject><subject>Dynamic programming</subject><subject>Fines &amp; penalties</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Rejection</subject><subject>Scheduling</subject><subject>Theory of Computation</subject><subject>Upper bounds</subject><issn>1382-6905</issn><issn>1573-2886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoHPAU8RydfTXqUxS9Y8LKeQ5tMt1267dq0iP56s1bw5mXmMfPeY-YRcs3hlgOYu8jBGstAKAZcgGRwQhZcG8mEtdlpwtIKluWgz8lFjDsASFgtyPOmRnoYmi9kvm9b9GPTbWlMpUW6L3zddEijrzFM7XHz0Yw1LfupC5EWXaAH7Ip2bDBekrOqaCNe_fYleXt82Kye2fr16WV1v2ZeAIzMVqWxAErnXhnMlPFBIq9kHtKQl9xqI3QQuZS6KkBneVkqhGArqUBgCXJJbmbfw9C_TxhHt-unIR0RnYRcWmuAq8QSM8sPfYwDVi79uC-GT8fBHRNzc2IuJeZ-EnNHazmLYiJ3Wxz-rP9RfQOgfW1h</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Hu, Guojun</creator><creator>Pan, Pengxiang</creator><creator>Liu, Suding</creator><creator>Yang, Ping</creator><creator>Xie, Runtao</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0001-8267-8848</orcidid></search><sort><creationdate>20240901</creationdate><title>The prize-collecting single machine scheduling with bounds and penalties</title><author>Hu, Guojun ; Pan, Pengxiang ; Liu, Suding ; Yang, Ping ; Xie, Runtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-8fb7800459c47e647cd3e1f39d0041b185725d29335fa0569bb4e0d8f3402eb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Combinatorics</topic><topic>Convex and Discrete Geometry</topic><topic>Dynamic programming</topic><topic>Fines &amp; penalties</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Rejection</topic><topic>Scheduling</topic><topic>Theory of Computation</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Guojun</creatorcontrib><creatorcontrib>Pan, Pengxiang</creatorcontrib><creatorcontrib>Liu, Suding</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Xie, Runtao</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of combinatorial optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Guojun</au><au>Pan, Pengxiang</au><au>Liu, Suding</au><au>Yang, Ping</au><au>Xie, Runtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The prize-collecting single machine scheduling with bounds and penalties</atitle><jtitle>Journal of combinatorial optimization</jtitle><stitle>J Comb Optim</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>48</volume><issue>2</issue><artnum>12</artnum><issn>1382-6905</issn><eissn>1573-2886</eissn><abstract>This study investigates the prize-collecting single machine scheduling with bounds and penalties (PC-SMS-BP). In this problem, a set of n jobs and a single machine are considered, where each job J j has a processing time p j , a profit π j and a rejection penalty w j . The upper bound on the processing number is U . The objective of this study is to find a feasible schedule that minimizes the makespan of the accepted jobs and the total rejection penalty of the rejected jobs under the condition that the number of the accepted jobs does not exceed a given threshold U while the total profit of the accepted jobs does not fall below a specified profit bound Π . We first demonstrate that this problem is NP -hard. Then, a pseudo-polynomial time dynamic programming algorithm and a fully polynomial time approximation scheme (FPTAS) are proposed. Finally, numerical experiments are conducted to compare the effectiveness of the two proposed algorithms.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10878-024-01203-0</doi><orcidid>https://orcid.org/0009-0001-8267-8848</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1382-6905
ispartof Journal of combinatorial optimization, 2024-09, Vol.48 (2), Article 12
issn 1382-6905
1573-2886
language eng
recordid cdi_proquest_journals_3093887014
source SpringerNature Journals
subjects Algorithms
Combinatorics
Convex and Discrete Geometry
Dynamic programming
Fines & penalties
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Polynomials
Rejection
Scheduling
Theory of Computation
Upper bounds
title The prize-collecting single machine scheduling with bounds and penalties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20prize-collecting%20single%20machine%20scheduling%20with%20bounds%20and%20penalties&rft.jtitle=Journal%20of%20combinatorial%20optimization&rft.au=Hu,%20Guojun&rft.date=2024-09-01&rft.volume=48&rft.issue=2&rft.artnum=12&rft.issn=1382-6905&rft.eissn=1573-2886&rft_id=info:doi/10.1007/s10878-024-01203-0&rft_dat=%3Cproquest_cross%3E3093887014%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3093887014&rft_id=info:pmid/&rfr_iscdi=true