Experimental Validation on the Ionic Strength and Charge Effect in Plasma-Induced Liquid Mobility

This study utilized a direct current-needle system for plasma generation and liquid flow inducement. The liquid flow was visualized and analyzed by particle image velocimetry. Electrolyte solutions of potassium chloride, potassium bromide, potassium iodide, calcium chloride and chromium(III) nitrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma chemistry and plasma processing 2024-07, Vol.44 (4), p.1811-1822
Hauptverfasser: Li, Dai-En, Lin, Che-Hsin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1822
container_issue 4
container_start_page 1811
container_title Plasma chemistry and plasma processing
container_volume 44
creator Li, Dai-En
Lin, Che-Hsin
description This study utilized a direct current-needle system for plasma generation and liquid flow inducement. The liquid flow was visualized and analyzed by particle image velocimetry. Electrolyte solutions of potassium chloride, potassium bromide, potassium iodide, calcium chloride and chromium(III) nitrate with concentrations ranging from 0.1 to 1.0 mM were studied. The results indicate that the plasma induces an upward liquid flow with an area mean velocity of up to 3.0 mm/s. The flow speed decreases with increasing electrolyte concentration and shows a strong dependence on the solution’s conductivity. This study proposed a physical model based on these findings. The plasma generates short-lived ions and electrons, which shift the hydrogen bonds among the water molecules through their electrical effect. This process creates an intermolecular force gradient and induces liquid flow on the water surface. The distance that electrostatic effect of a charged particle can persist in an electrolyte solution is defined as Debye length. This physical quantity decreases with increasing ionic strength or electrical conductivity. Thus, the plasma induces slower liquid flow in solutions with higher electrolyte concentration. Based on the regression analysis, the characteristic flow velocity is significantly proportional to the square of the solution’s Debye length, with a coefficient of determination of 0.9365.
doi_str_mv 10.1007/s11090-024-10486-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3093886977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093886977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-7b4cb68eb4e155bc1d888a8225e883c3686c6f8a187d2aa3c0bbf2e82e25d85a3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gKeA59V87e7sUUrVQkXBj2vIJtk2ZZttkyzYf2-0gjdhYObwPjPMg9AVJTeUkPo2UkoaUhAmCkoEVIU4QhNa1qyABqpjNCEsz4IzcYrOYlwTkjFeT5CafW5tcBvrk-rxh-qdUckNHudKK4vng3cav6Zg_TKtsPIGT1cqLC2edZ3VCTuPX3oVN6qYezNqa_DC7UZn8NPQut6l_QU66VQf7eVvP0fv97O36WOxeH6YT-8WhWaEpKJuhW4rsK2wtCxbTQ0AKGCstABc8woqXXWgKNSGKcU1aduOWWCWlQZKxc_R9WHvNgy70cYk18MYfD4pOWk4QNXUdU6xQ0qHIcZgO7nN36uwl5TIb5XyoFJmlfJHpRQZ4gco5rBf2vC3-h_qC5iDdtM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093886977</pqid></control><display><type>article</type><title>Experimental Validation on the Ionic Strength and Charge Effect in Plasma-Induced Liquid Mobility</title><source>SpringerNature Journals</source><creator>Li, Dai-En ; Lin, Che-Hsin</creator><creatorcontrib>Li, Dai-En ; Lin, Che-Hsin</creatorcontrib><description>This study utilized a direct current-needle system for plasma generation and liquid flow inducement. The liquid flow was visualized and analyzed by particle image velocimetry. Electrolyte solutions of potassium chloride, potassium bromide, potassium iodide, calcium chloride and chromium(III) nitrate with concentrations ranging from 0.1 to 1.0 mM were studied. The results indicate that the plasma induces an upward liquid flow with an area mean velocity of up to 3.0 mm/s. The flow speed decreases with increasing electrolyte concentration and shows a strong dependence on the solution’s conductivity. This study proposed a physical model based on these findings. The plasma generates short-lived ions and electrons, which shift the hydrogen bonds among the water molecules through their electrical effect. This process creates an intermolecular force gradient and induces liquid flow on the water surface. The distance that electrostatic effect of a charged particle can persist in an electrolyte solution is defined as Debye length. This physical quantity decreases with increasing ionic strength or electrical conductivity. Thus, the plasma induces slower liquid flow in solutions with higher electrolyte concentration. Based on the regression analysis, the characteristic flow velocity is significantly proportional to the square of the solution’s Debye length, with a coefficient of determination of 0.9365.</description><identifier>ISSN: 0272-4324</identifier><identifier>EISSN: 1572-8986</identifier><identifier>DOI: 10.1007/s11090-024-10486-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bonding strength ; Calcium chloride ; Characterization and Evaluation of Materials ; Charged particles ; Chemical bonds ; Chemistry ; Chemistry and Materials Science ; Classical Mechanics ; Concentration gradient ; Debye length ; Direct current ; Electrical resistivity ; Electrolytes ; Flow velocity ; Hydrogen bonds ; Inorganic Chemistry ; Intermolecular forces ; Liquid flow ; Mechanical Engineering ; Original Paper ; Particle image velocimetry ; Plasma ; Potassium ; Potassium bromides ; Potassium chloride ; Potassium iodides ; Regression analysis ; Water chemistry</subject><ispartof>Plasma chemistry and plasma processing, 2024-07, Vol.44 (4), p.1811-1822</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-7b4cb68eb4e155bc1d888a8225e883c3686c6f8a187d2aa3c0bbf2e82e25d85a3</cites><orcidid>0000-0002-5229-6101 ; 0000-0002-0722-4854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11090-024-10486-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11090-024-10486-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Dai-En</creatorcontrib><creatorcontrib>Lin, Che-Hsin</creatorcontrib><title>Experimental Validation on the Ionic Strength and Charge Effect in Plasma-Induced Liquid Mobility</title><title>Plasma chemistry and plasma processing</title><addtitle>Plasma Chem Plasma Process</addtitle><description>This study utilized a direct current-needle system for plasma generation and liquid flow inducement. The liquid flow was visualized and analyzed by particle image velocimetry. Electrolyte solutions of potassium chloride, potassium bromide, potassium iodide, calcium chloride and chromium(III) nitrate with concentrations ranging from 0.1 to 1.0 mM were studied. The results indicate that the plasma induces an upward liquid flow with an area mean velocity of up to 3.0 mm/s. The flow speed decreases with increasing electrolyte concentration and shows a strong dependence on the solution’s conductivity. This study proposed a physical model based on these findings. The plasma generates short-lived ions and electrons, which shift the hydrogen bonds among the water molecules through their electrical effect. This process creates an intermolecular force gradient and induces liquid flow on the water surface. The distance that electrostatic effect of a charged particle can persist in an electrolyte solution is defined as Debye length. This physical quantity decreases with increasing ionic strength or electrical conductivity. Thus, the plasma induces slower liquid flow in solutions with higher electrolyte concentration. Based on the regression analysis, the characteristic flow velocity is significantly proportional to the square of the solution’s Debye length, with a coefficient of determination of 0.9365.</description><subject>Bonding strength</subject><subject>Calcium chloride</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charged particles</subject><subject>Chemical bonds</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Concentration gradient</subject><subject>Debye length</subject><subject>Direct current</subject><subject>Electrical resistivity</subject><subject>Electrolytes</subject><subject>Flow velocity</subject><subject>Hydrogen bonds</subject><subject>Inorganic Chemistry</subject><subject>Intermolecular forces</subject><subject>Liquid flow</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Particle image velocimetry</subject><subject>Plasma</subject><subject>Potassium</subject><subject>Potassium bromides</subject><subject>Potassium chloride</subject><subject>Potassium iodides</subject><subject>Regression analysis</subject><subject>Water chemistry</subject><issn>0272-4324</issn><issn>1572-8986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD_-gKeA59V87e7sUUrVQkXBj2vIJtk2ZZttkyzYf2-0gjdhYObwPjPMg9AVJTeUkPo2UkoaUhAmCkoEVIU4QhNa1qyABqpjNCEsz4IzcYrOYlwTkjFeT5CafW5tcBvrk-rxh-qdUckNHudKK4vng3cav6Zg_TKtsPIGT1cqLC2edZ3VCTuPX3oVN6qYezNqa_DC7UZn8NPQut6l_QU66VQf7eVvP0fv97O36WOxeH6YT-8WhWaEpKJuhW4rsK2wtCxbTQ0AKGCstABc8woqXXWgKNSGKcU1aduOWWCWlQZKxc_R9WHvNgy70cYk18MYfD4pOWk4QNXUdU6xQ0qHIcZgO7nN36uwl5TIb5XyoFJmlfJHpRQZ4gco5rBf2vC3-h_qC5iDdtM</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Li, Dai-En</creator><creator>Lin, Che-Hsin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5229-6101</orcidid><orcidid>https://orcid.org/0000-0002-0722-4854</orcidid></search><sort><creationdate>20240701</creationdate><title>Experimental Validation on the Ionic Strength and Charge Effect in Plasma-Induced Liquid Mobility</title><author>Li, Dai-En ; Lin, Che-Hsin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-7b4cb68eb4e155bc1d888a8225e883c3686c6f8a187d2aa3c0bbf2e82e25d85a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bonding strength</topic><topic>Calcium chloride</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charged particles</topic><topic>Chemical bonds</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Concentration gradient</topic><topic>Debye length</topic><topic>Direct current</topic><topic>Electrical resistivity</topic><topic>Electrolytes</topic><topic>Flow velocity</topic><topic>Hydrogen bonds</topic><topic>Inorganic Chemistry</topic><topic>Intermolecular forces</topic><topic>Liquid flow</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Particle image velocimetry</topic><topic>Plasma</topic><topic>Potassium</topic><topic>Potassium bromides</topic><topic>Potassium chloride</topic><topic>Potassium iodides</topic><topic>Regression analysis</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Dai-En</creatorcontrib><creatorcontrib>Lin, Che-Hsin</creatorcontrib><collection>CrossRef</collection><jtitle>Plasma chemistry and plasma processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Dai-En</au><au>Lin, Che-Hsin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Validation on the Ionic Strength and Charge Effect in Plasma-Induced Liquid Mobility</atitle><jtitle>Plasma chemistry and plasma processing</jtitle><stitle>Plasma Chem Plasma Process</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>44</volume><issue>4</issue><spage>1811</spage><epage>1822</epage><pages>1811-1822</pages><issn>0272-4324</issn><eissn>1572-8986</eissn><abstract>This study utilized a direct current-needle system for plasma generation and liquid flow inducement. The liquid flow was visualized and analyzed by particle image velocimetry. Electrolyte solutions of potassium chloride, potassium bromide, potassium iodide, calcium chloride and chromium(III) nitrate with concentrations ranging from 0.1 to 1.0 mM were studied. The results indicate that the plasma induces an upward liquid flow with an area mean velocity of up to 3.0 mm/s. The flow speed decreases with increasing electrolyte concentration and shows a strong dependence on the solution’s conductivity. This study proposed a physical model based on these findings. The plasma generates short-lived ions and electrons, which shift the hydrogen bonds among the water molecules through their electrical effect. This process creates an intermolecular force gradient and induces liquid flow on the water surface. The distance that electrostatic effect of a charged particle can persist in an electrolyte solution is defined as Debye length. This physical quantity decreases with increasing ionic strength or electrical conductivity. Thus, the plasma induces slower liquid flow in solutions with higher electrolyte concentration. Based on the regression analysis, the characteristic flow velocity is significantly proportional to the square of the solution’s Debye length, with a coefficient of determination of 0.9365.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11090-024-10486-4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5229-6101</orcidid><orcidid>https://orcid.org/0000-0002-0722-4854</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0272-4324
ispartof Plasma chemistry and plasma processing, 2024-07, Vol.44 (4), p.1811-1822
issn 0272-4324
1572-8986
language eng
recordid cdi_proquest_journals_3093886977
source SpringerNature Journals
subjects Bonding strength
Calcium chloride
Characterization and Evaluation of Materials
Charged particles
Chemical bonds
Chemistry
Chemistry and Materials Science
Classical Mechanics
Concentration gradient
Debye length
Direct current
Electrical resistivity
Electrolytes
Flow velocity
Hydrogen bonds
Inorganic Chemistry
Intermolecular forces
Liquid flow
Mechanical Engineering
Original Paper
Particle image velocimetry
Plasma
Potassium
Potassium bromides
Potassium chloride
Potassium iodides
Regression analysis
Water chemistry
title Experimental Validation on the Ionic Strength and Charge Effect in Plasma-Induced Liquid Mobility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Validation%20on%20the%20Ionic%20Strength%20and%20Charge%20Effect%20in%20Plasma-Induced%20Liquid%20Mobility&rft.jtitle=Plasma%20chemistry%20and%20plasma%20processing&rft.au=Li,%20Dai-En&rft.date=2024-07-01&rft.volume=44&rft.issue=4&rft.spage=1811&rft.epage=1822&rft.pages=1811-1822&rft.issn=0272-4324&rft.eissn=1572-8986&rft_id=info:doi/10.1007/s11090-024-10486-4&rft_dat=%3Cproquest_cross%3E3093886977%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3093886977&rft_id=info:pmid/&rfr_iscdi=true