Modeling Study of Chemical Kinetics and Vibrational Excitation in a Volumetric DBD in Humid Air at Atmospheric Pressure

A zero-dimensionl model is developed to study the chemical kinetics of a volumetric dielectric barrier discharge (DBD) reactor operating with humid air at atmospheric pressure. This work focuses on the relation between molecular vibrational excitation, the plasma reactor input power and the number d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma chemistry and plasma processing 2024-07, Vol.44 (4), p.1575-1594
Hauptverfasser: Pierotti, Giacomo, Popoli, Arturo, Pintassilgo, Carlos Daniel, Cristofolini, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1594
container_issue 4
container_start_page 1575
container_title Plasma chemistry and plasma processing
container_volume 44
creator Pierotti, Giacomo
Popoli, Arturo
Pintassilgo, Carlos Daniel
Cristofolini, Andrea
description A zero-dimensionl model is developed to study the chemical kinetics of a volumetric dielectric barrier discharge (DBD) reactor operating with humid air at atmospheric pressure. This work focuses on the relation between molecular vibrational excitation, the plasma reactor input power and the number densities of several species that are known to play an important role in biomedical applications (e.g. O 3 , NO, NO 2 , ...). A preliminary study is carried out to observe the influence of water molecules on the electron energy distribution function for different values of water concentration and reduced electric field. A simplified approach is then adopted to quantify the contribution of vibrationally-excited O 2 molecules to NO formation. The results obtained using our detailed model suggest that for the physical conditions considered in this work O 2 vibrational kinetics can be neglected without compromising the overall accuracy of the simulation. Finally, a reaction set is coupled with an equivalent circuit model to simulate the E-I characteristic of a typical DBD reactor. Different simulations were carried out considering different values of the average plasma input power densities. A particular focus was given to the influence of the Zeldovich mechanism on O 3 and NO X production performing simulations where this reaction is not considered. The obtained results are shown and the role of vibrationally excited N 2 molecules is discussed. The simulation results indicate also that N 2 vibrational excitation, and more precisely the Zeldovich mechanism, has a larger effect on O 3 and NO X production at intermediate input power levels.
doi_str_mv 10.1007/s11090-024-10484-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3093886865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093886865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-29ac967e6fd952e250359e1ac97aca6130c0f1e538ff560445846f93fa70992d3</originalsourceid><addsrcrecordid>eNp9UEtLAzEQDqJgrf4BTwHPq5PHZjfH2lYrKgo-riFmE410d2uSRfvvTa3gzdPMfC-YD6FjAqcEoDqLhICEAigvCPCaF2IHjUhZ0aKWtdhFI6B554zyfXQQ4ztAtrFqhD5v-8YuffeKH9LQrHHv8PTNtt7oJb72nU3eRKy7Bj_7l6CT77tMzL-MTz8H9h3W-LlfDq1NwRs8O59tsMXQ-gZPfMA64Ulq-7h6sxv-PtgYh2AP0Z7Ty2iPfucYPV3MH6eL4ubu8mo6uSkM5TwVVGojRWWFa2RJLS2BldKSDFbaaEEYGHDElqx2rhTAeVlz4SRzugIpacPG6GSbuwr9x2BjUu_9EPITUTGQrK5FLcqsoluVCX2MwTq1Cr7VYa0IqE3BaluwygWrn4KVyCa2NcUs7l5t-Iv-x_UN7MR9rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093886865</pqid></control><display><type>article</type><title>Modeling Study of Chemical Kinetics and Vibrational Excitation in a Volumetric DBD in Humid Air at Atmospheric Pressure</title><source>Springer Nature - Complete Springer Journals</source><creator>Pierotti, Giacomo ; Popoli, Arturo ; Pintassilgo, Carlos Daniel ; Cristofolini, Andrea</creator><creatorcontrib>Pierotti, Giacomo ; Popoli, Arturo ; Pintassilgo, Carlos Daniel ; Cristofolini, Andrea</creatorcontrib><description>A zero-dimensionl model is developed to study the chemical kinetics of a volumetric dielectric barrier discharge (DBD) reactor operating with humid air at atmospheric pressure. This work focuses on the relation between molecular vibrational excitation, the plasma reactor input power and the number densities of several species that are known to play an important role in biomedical applications (e.g. O 3 , NO, NO 2 , ...). A preliminary study is carried out to observe the influence of water molecules on the electron energy distribution function for different values of water concentration and reduced electric field. A simplified approach is then adopted to quantify the contribution of vibrationally-excited O 2 molecules to NO formation. The results obtained using our detailed model suggest that for the physical conditions considered in this work O 2 vibrational kinetics can be neglected without compromising the overall accuracy of the simulation. Finally, a reaction set is coupled with an equivalent circuit model to simulate the E-I characteristic of a typical DBD reactor. Different simulations were carried out considering different values of the average plasma input power densities. A particular focus was given to the influence of the Zeldovich mechanism on O 3 and NO X production performing simulations where this reaction is not considered. The obtained results are shown and the role of vibrationally excited N 2 molecules is discussed. The simulation results indicate also that N 2 vibrational excitation, and more precisely the Zeldovich mechanism, has a larger effect on O 3 and NO X production at intermediate input power levels.</description><identifier>ISSN: 0272-4324</identifier><identifier>EISSN: 1572-8986</identifier><identifier>DOI: 10.1007/s11090-024-10484-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Atmospheric pressure ; Biomedical materials ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Classical Mechanics ; Dielectric barrier discharge ; Distribution functions ; Electric fields ; Electron energy distribution ; Equivalent circuits ; Excitation ; Inorganic Chemistry ; Mechanical Engineering ; Nitrogen dioxide ; Nitrogen plasma ; Original Paper ; Reaction kinetics ; Water chemistry</subject><ispartof>Plasma chemistry and plasma processing, 2024-07, Vol.44 (4), p.1575-1594</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-29ac967e6fd952e250359e1ac97aca6130c0f1e538ff560445846f93fa70992d3</cites><orcidid>0000-0003-1973-0612 ; 0000-0003-1527-2976 ; 0000-0001-5896-6615 ; 0000-0002-0990-8053</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11090-024-10484-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11090-024-10484-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Pierotti, Giacomo</creatorcontrib><creatorcontrib>Popoli, Arturo</creatorcontrib><creatorcontrib>Pintassilgo, Carlos Daniel</creatorcontrib><creatorcontrib>Cristofolini, Andrea</creatorcontrib><title>Modeling Study of Chemical Kinetics and Vibrational Excitation in a Volumetric DBD in Humid Air at Atmospheric Pressure</title><title>Plasma chemistry and plasma processing</title><addtitle>Plasma Chem Plasma Process</addtitle><description>A zero-dimensionl model is developed to study the chemical kinetics of a volumetric dielectric barrier discharge (DBD) reactor operating with humid air at atmospheric pressure. This work focuses on the relation between molecular vibrational excitation, the plasma reactor input power and the number densities of several species that are known to play an important role in biomedical applications (e.g. O 3 , NO, NO 2 , ...). A preliminary study is carried out to observe the influence of water molecules on the electron energy distribution function for different values of water concentration and reduced electric field. A simplified approach is then adopted to quantify the contribution of vibrationally-excited O 2 molecules to NO formation. The results obtained using our detailed model suggest that for the physical conditions considered in this work O 2 vibrational kinetics can be neglected without compromising the overall accuracy of the simulation. Finally, a reaction set is coupled with an equivalent circuit model to simulate the E-I characteristic of a typical DBD reactor. Different simulations were carried out considering different values of the average plasma input power densities. A particular focus was given to the influence of the Zeldovich mechanism on O 3 and NO X production performing simulations where this reaction is not considered. The obtained results are shown and the role of vibrationally excited N 2 molecules is discussed. The simulation results indicate also that N 2 vibrational excitation, and more precisely the Zeldovich mechanism, has a larger effect on O 3 and NO X production at intermediate input power levels.</description><subject>Atmospheric pressure</subject><subject>Biomedical materials</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Dielectric barrier discharge</subject><subject>Distribution functions</subject><subject>Electric fields</subject><subject>Electron energy distribution</subject><subject>Equivalent circuits</subject><subject>Excitation</subject><subject>Inorganic Chemistry</subject><subject>Mechanical Engineering</subject><subject>Nitrogen dioxide</subject><subject>Nitrogen plasma</subject><subject>Original Paper</subject><subject>Reaction kinetics</subject><subject>Water chemistry</subject><issn>0272-4324</issn><issn>1572-8986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UEtLAzEQDqJgrf4BTwHPq5PHZjfH2lYrKgo-riFmE410d2uSRfvvTa3gzdPMfC-YD6FjAqcEoDqLhICEAigvCPCaF2IHjUhZ0aKWtdhFI6B554zyfXQQ4ztAtrFqhD5v-8YuffeKH9LQrHHv8PTNtt7oJb72nU3eRKy7Bj_7l6CT77tMzL-MTz8H9h3W-LlfDq1NwRs8O59tsMXQ-gZPfMA64Ulq-7h6sxv-PtgYh2AP0Z7Ty2iPfucYPV3MH6eL4ubu8mo6uSkM5TwVVGojRWWFa2RJLS2BldKSDFbaaEEYGHDElqx2rhTAeVlz4SRzugIpacPG6GSbuwr9x2BjUu_9EPITUTGQrK5FLcqsoluVCX2MwTq1Cr7VYa0IqE3BaluwygWrn4KVyCa2NcUs7l5t-Iv-x_UN7MR9rw</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Pierotti, Giacomo</creator><creator>Popoli, Arturo</creator><creator>Pintassilgo, Carlos Daniel</creator><creator>Cristofolini, Andrea</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1973-0612</orcidid><orcidid>https://orcid.org/0000-0003-1527-2976</orcidid><orcidid>https://orcid.org/0000-0001-5896-6615</orcidid><orcidid>https://orcid.org/0000-0002-0990-8053</orcidid></search><sort><creationdate>20240701</creationdate><title>Modeling Study of Chemical Kinetics and Vibrational Excitation in a Volumetric DBD in Humid Air at Atmospheric Pressure</title><author>Pierotti, Giacomo ; Popoli, Arturo ; Pintassilgo, Carlos Daniel ; Cristofolini, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-29ac967e6fd952e250359e1ac97aca6130c0f1e538ff560445846f93fa70992d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atmospheric pressure</topic><topic>Biomedical materials</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Dielectric barrier discharge</topic><topic>Distribution functions</topic><topic>Electric fields</topic><topic>Electron energy distribution</topic><topic>Equivalent circuits</topic><topic>Excitation</topic><topic>Inorganic Chemistry</topic><topic>Mechanical Engineering</topic><topic>Nitrogen dioxide</topic><topic>Nitrogen plasma</topic><topic>Original Paper</topic><topic>Reaction kinetics</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pierotti, Giacomo</creatorcontrib><creatorcontrib>Popoli, Arturo</creatorcontrib><creatorcontrib>Pintassilgo, Carlos Daniel</creatorcontrib><creatorcontrib>Cristofolini, Andrea</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Plasma chemistry and plasma processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pierotti, Giacomo</au><au>Popoli, Arturo</au><au>Pintassilgo, Carlos Daniel</au><au>Cristofolini, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Study of Chemical Kinetics and Vibrational Excitation in a Volumetric DBD in Humid Air at Atmospheric Pressure</atitle><jtitle>Plasma chemistry and plasma processing</jtitle><stitle>Plasma Chem Plasma Process</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>44</volume><issue>4</issue><spage>1575</spage><epage>1594</epage><pages>1575-1594</pages><issn>0272-4324</issn><eissn>1572-8986</eissn><abstract>A zero-dimensionl model is developed to study the chemical kinetics of a volumetric dielectric barrier discharge (DBD) reactor operating with humid air at atmospheric pressure. This work focuses on the relation between molecular vibrational excitation, the plasma reactor input power and the number densities of several species that are known to play an important role in biomedical applications (e.g. O 3 , NO, NO 2 , ...). A preliminary study is carried out to observe the influence of water molecules on the electron energy distribution function for different values of water concentration and reduced electric field. A simplified approach is then adopted to quantify the contribution of vibrationally-excited O 2 molecules to NO formation. The results obtained using our detailed model suggest that for the physical conditions considered in this work O 2 vibrational kinetics can be neglected without compromising the overall accuracy of the simulation. Finally, a reaction set is coupled with an equivalent circuit model to simulate the E-I characteristic of a typical DBD reactor. Different simulations were carried out considering different values of the average plasma input power densities. A particular focus was given to the influence of the Zeldovich mechanism on O 3 and NO X production performing simulations where this reaction is not considered. The obtained results are shown and the role of vibrationally excited N 2 molecules is discussed. The simulation results indicate also that N 2 vibrational excitation, and more precisely the Zeldovich mechanism, has a larger effect on O 3 and NO X production at intermediate input power levels.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11090-024-10484-6</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-1973-0612</orcidid><orcidid>https://orcid.org/0000-0003-1527-2976</orcidid><orcidid>https://orcid.org/0000-0001-5896-6615</orcidid><orcidid>https://orcid.org/0000-0002-0990-8053</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0272-4324
ispartof Plasma chemistry and plasma processing, 2024-07, Vol.44 (4), p.1575-1594
issn 0272-4324
1572-8986
language eng
recordid cdi_proquest_journals_3093886865
source Springer Nature - Complete Springer Journals
subjects Atmospheric pressure
Biomedical materials
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Classical Mechanics
Dielectric barrier discharge
Distribution functions
Electric fields
Electron energy distribution
Equivalent circuits
Excitation
Inorganic Chemistry
Mechanical Engineering
Nitrogen dioxide
Nitrogen plasma
Original Paper
Reaction kinetics
Water chemistry
title Modeling Study of Chemical Kinetics and Vibrational Excitation in a Volumetric DBD in Humid Air at Atmospheric Pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A28%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Study%20of%20Chemical%20Kinetics%20and%20Vibrational%20Excitation%20in%20a%20Volumetric%20DBD%20in%20Humid%20Air%20at%20Atmospheric%20Pressure&rft.jtitle=Plasma%20chemistry%20and%20plasma%20processing&rft.au=Pierotti,%20Giacomo&rft.date=2024-07-01&rft.volume=44&rft.issue=4&rft.spage=1575&rft.epage=1594&rft.pages=1575-1594&rft.issn=0272-4324&rft.eissn=1572-8986&rft_id=info:doi/10.1007/s11090-024-10484-6&rft_dat=%3Cproquest_cross%3E3093886865%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3093886865&rft_id=info:pmid/&rfr_iscdi=true