Modeling Study of Chemical Kinetics and Vibrational Excitation in a Volumetric DBD in Humid Air at Atmospheric Pressure
A zero-dimensionl model is developed to study the chemical kinetics of a volumetric dielectric barrier discharge (DBD) reactor operating with humid air at atmospheric pressure. This work focuses on the relation between molecular vibrational excitation, the plasma reactor input power and the number d...
Gespeichert in:
Veröffentlicht in: | Plasma chemistry and plasma processing 2024-07, Vol.44 (4), p.1575-1594 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1594 |
---|---|
container_issue | 4 |
container_start_page | 1575 |
container_title | Plasma chemistry and plasma processing |
container_volume | 44 |
creator | Pierotti, Giacomo Popoli, Arturo Pintassilgo, Carlos Daniel Cristofolini, Andrea |
description | A zero-dimensionl model is developed to study the chemical kinetics of a volumetric dielectric barrier discharge (DBD) reactor operating with humid air at atmospheric pressure. This work focuses on the relation between molecular vibrational excitation, the plasma reactor input power and the number densities of several species that are known to play an important role in biomedical applications (e.g.
O
3
,
NO,
NO
2
, ...). A preliminary study is carried out to observe the influence of water molecules on the electron energy distribution function for different values of water concentration and reduced electric field. A simplified approach is then adopted to quantify the contribution of vibrationally-excited
O
2
molecules to
NO
formation. The results obtained using our detailed model suggest that for the physical conditions considered in this work
O
2
vibrational kinetics can be neglected without compromising the overall accuracy of the simulation. Finally, a reaction set is coupled with an equivalent circuit model to simulate the E-I characteristic of a typical DBD reactor. Different simulations were carried out considering different values of the average plasma input power densities. A particular focus was given to the influence of the Zeldovich mechanism on
O
3
and
NO
X
production performing simulations where this reaction is not considered. The obtained results are shown and the role of vibrationally excited
N
2
molecules is discussed. The simulation results indicate also that
N
2
vibrational excitation, and more precisely the Zeldovich mechanism, has a larger effect on
O
3
and
NO
X
production at intermediate input power levels. |
doi_str_mv | 10.1007/s11090-024-10484-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3093886865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093886865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-29ac967e6fd952e250359e1ac97aca6130c0f1e538ff560445846f93fa70992d3</originalsourceid><addsrcrecordid>eNp9UEtLAzEQDqJgrf4BTwHPq5PHZjfH2lYrKgo-riFmE410d2uSRfvvTa3gzdPMfC-YD6FjAqcEoDqLhICEAigvCPCaF2IHjUhZ0aKWtdhFI6B554zyfXQQ4ztAtrFqhD5v-8YuffeKH9LQrHHv8PTNtt7oJb72nU3eRKy7Bj_7l6CT77tMzL-MTz8H9h3W-LlfDq1NwRs8O59tsMXQ-gZPfMA64Ulq-7h6sxv-PtgYh2AP0Z7Ty2iPfucYPV3MH6eL4ubu8mo6uSkM5TwVVGojRWWFa2RJLS2BldKSDFbaaEEYGHDElqx2rhTAeVlz4SRzugIpacPG6GSbuwr9x2BjUu_9EPITUTGQrK5FLcqsoluVCX2MwTq1Cr7VYa0IqE3BaluwygWrn4KVyCa2NcUs7l5t-Iv-x_UN7MR9rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093886865</pqid></control><display><type>article</type><title>Modeling Study of Chemical Kinetics and Vibrational Excitation in a Volumetric DBD in Humid Air at Atmospheric Pressure</title><source>Springer Nature - Complete Springer Journals</source><creator>Pierotti, Giacomo ; Popoli, Arturo ; Pintassilgo, Carlos Daniel ; Cristofolini, Andrea</creator><creatorcontrib>Pierotti, Giacomo ; Popoli, Arturo ; Pintassilgo, Carlos Daniel ; Cristofolini, Andrea</creatorcontrib><description>A zero-dimensionl model is developed to study the chemical kinetics of a volumetric dielectric barrier discharge (DBD) reactor operating with humid air at atmospheric pressure. This work focuses on the relation between molecular vibrational excitation, the plasma reactor input power and the number densities of several species that are known to play an important role in biomedical applications (e.g.
O
3
,
NO,
NO
2
, ...). A preliminary study is carried out to observe the influence of water molecules on the electron energy distribution function for different values of water concentration and reduced electric field. A simplified approach is then adopted to quantify the contribution of vibrationally-excited
O
2
molecules to
NO
formation. The results obtained using our detailed model suggest that for the physical conditions considered in this work
O
2
vibrational kinetics can be neglected without compromising the overall accuracy of the simulation. Finally, a reaction set is coupled with an equivalent circuit model to simulate the E-I characteristic of a typical DBD reactor. Different simulations were carried out considering different values of the average plasma input power densities. A particular focus was given to the influence of the Zeldovich mechanism on
O
3
and
NO
X
production performing simulations where this reaction is not considered. The obtained results are shown and the role of vibrationally excited
N
2
molecules is discussed. The simulation results indicate also that
N
2
vibrational excitation, and more precisely the Zeldovich mechanism, has a larger effect on
O
3
and
NO
X
production at intermediate input power levels.</description><identifier>ISSN: 0272-4324</identifier><identifier>EISSN: 1572-8986</identifier><identifier>DOI: 10.1007/s11090-024-10484-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Atmospheric pressure ; Biomedical materials ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Classical Mechanics ; Dielectric barrier discharge ; Distribution functions ; Electric fields ; Electron energy distribution ; Equivalent circuits ; Excitation ; Inorganic Chemistry ; Mechanical Engineering ; Nitrogen dioxide ; Nitrogen plasma ; Original Paper ; Reaction kinetics ; Water chemistry</subject><ispartof>Plasma chemistry and plasma processing, 2024-07, Vol.44 (4), p.1575-1594</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-29ac967e6fd952e250359e1ac97aca6130c0f1e538ff560445846f93fa70992d3</cites><orcidid>0000-0003-1973-0612 ; 0000-0003-1527-2976 ; 0000-0001-5896-6615 ; 0000-0002-0990-8053</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11090-024-10484-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11090-024-10484-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Pierotti, Giacomo</creatorcontrib><creatorcontrib>Popoli, Arturo</creatorcontrib><creatorcontrib>Pintassilgo, Carlos Daniel</creatorcontrib><creatorcontrib>Cristofolini, Andrea</creatorcontrib><title>Modeling Study of Chemical Kinetics and Vibrational Excitation in a Volumetric DBD in Humid Air at Atmospheric Pressure</title><title>Plasma chemistry and plasma processing</title><addtitle>Plasma Chem Plasma Process</addtitle><description>A zero-dimensionl model is developed to study the chemical kinetics of a volumetric dielectric barrier discharge (DBD) reactor operating with humid air at atmospheric pressure. This work focuses on the relation between molecular vibrational excitation, the plasma reactor input power and the number densities of several species that are known to play an important role in biomedical applications (e.g.
O
3
,
NO,
NO
2
, ...). A preliminary study is carried out to observe the influence of water molecules on the electron energy distribution function for different values of water concentration and reduced electric field. A simplified approach is then adopted to quantify the contribution of vibrationally-excited
O
2
molecules to
NO
formation. The results obtained using our detailed model suggest that for the physical conditions considered in this work
O
2
vibrational kinetics can be neglected without compromising the overall accuracy of the simulation. Finally, a reaction set is coupled with an equivalent circuit model to simulate the E-I characteristic of a typical DBD reactor. Different simulations were carried out considering different values of the average plasma input power densities. A particular focus was given to the influence of the Zeldovich mechanism on
O
3
and
NO
X
production performing simulations where this reaction is not considered. The obtained results are shown and the role of vibrationally excited
N
2
molecules is discussed. The simulation results indicate also that
N
2
vibrational excitation, and more precisely the Zeldovich mechanism, has a larger effect on
O
3
and
NO
X
production at intermediate input power levels.</description><subject>Atmospheric pressure</subject><subject>Biomedical materials</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Dielectric barrier discharge</subject><subject>Distribution functions</subject><subject>Electric fields</subject><subject>Electron energy distribution</subject><subject>Equivalent circuits</subject><subject>Excitation</subject><subject>Inorganic Chemistry</subject><subject>Mechanical Engineering</subject><subject>Nitrogen dioxide</subject><subject>Nitrogen plasma</subject><subject>Original Paper</subject><subject>Reaction kinetics</subject><subject>Water chemistry</subject><issn>0272-4324</issn><issn>1572-8986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UEtLAzEQDqJgrf4BTwHPq5PHZjfH2lYrKgo-riFmE410d2uSRfvvTa3gzdPMfC-YD6FjAqcEoDqLhICEAigvCPCaF2IHjUhZ0aKWtdhFI6B554zyfXQQ4ztAtrFqhD5v-8YuffeKH9LQrHHv8PTNtt7oJb72nU3eRKy7Bj_7l6CT77tMzL-MTz8H9h3W-LlfDq1NwRs8O59tsMXQ-gZPfMA64Ulq-7h6sxv-PtgYh2AP0Z7Ty2iPfucYPV3MH6eL4ubu8mo6uSkM5TwVVGojRWWFa2RJLS2BldKSDFbaaEEYGHDElqx2rhTAeVlz4SRzugIpacPG6GSbuwr9x2BjUu_9EPITUTGQrK5FLcqsoluVCX2MwTq1Cr7VYa0IqE3BaluwygWrn4KVyCa2NcUs7l5t-Iv-x_UN7MR9rw</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Pierotti, Giacomo</creator><creator>Popoli, Arturo</creator><creator>Pintassilgo, Carlos Daniel</creator><creator>Cristofolini, Andrea</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1973-0612</orcidid><orcidid>https://orcid.org/0000-0003-1527-2976</orcidid><orcidid>https://orcid.org/0000-0001-5896-6615</orcidid><orcidid>https://orcid.org/0000-0002-0990-8053</orcidid></search><sort><creationdate>20240701</creationdate><title>Modeling Study of Chemical Kinetics and Vibrational Excitation in a Volumetric DBD in Humid Air at Atmospheric Pressure</title><author>Pierotti, Giacomo ; Popoli, Arturo ; Pintassilgo, Carlos Daniel ; Cristofolini, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-29ac967e6fd952e250359e1ac97aca6130c0f1e538ff560445846f93fa70992d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atmospheric pressure</topic><topic>Biomedical materials</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Dielectric barrier discharge</topic><topic>Distribution functions</topic><topic>Electric fields</topic><topic>Electron energy distribution</topic><topic>Equivalent circuits</topic><topic>Excitation</topic><topic>Inorganic Chemistry</topic><topic>Mechanical Engineering</topic><topic>Nitrogen dioxide</topic><topic>Nitrogen plasma</topic><topic>Original Paper</topic><topic>Reaction kinetics</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pierotti, Giacomo</creatorcontrib><creatorcontrib>Popoli, Arturo</creatorcontrib><creatorcontrib>Pintassilgo, Carlos Daniel</creatorcontrib><creatorcontrib>Cristofolini, Andrea</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Plasma chemistry and plasma processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pierotti, Giacomo</au><au>Popoli, Arturo</au><au>Pintassilgo, Carlos Daniel</au><au>Cristofolini, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Study of Chemical Kinetics and Vibrational Excitation in a Volumetric DBD in Humid Air at Atmospheric Pressure</atitle><jtitle>Plasma chemistry and plasma processing</jtitle><stitle>Plasma Chem Plasma Process</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>44</volume><issue>4</issue><spage>1575</spage><epage>1594</epage><pages>1575-1594</pages><issn>0272-4324</issn><eissn>1572-8986</eissn><abstract>A zero-dimensionl model is developed to study the chemical kinetics of a volumetric dielectric barrier discharge (DBD) reactor operating with humid air at atmospheric pressure. This work focuses on the relation between molecular vibrational excitation, the plasma reactor input power and the number densities of several species that are known to play an important role in biomedical applications (e.g.
O
3
,
NO,
NO
2
, ...). A preliminary study is carried out to observe the influence of water molecules on the electron energy distribution function for different values of water concentration and reduced electric field. A simplified approach is then adopted to quantify the contribution of vibrationally-excited
O
2
molecules to
NO
formation. The results obtained using our detailed model suggest that for the physical conditions considered in this work
O
2
vibrational kinetics can be neglected without compromising the overall accuracy of the simulation. Finally, a reaction set is coupled with an equivalent circuit model to simulate the E-I characteristic of a typical DBD reactor. Different simulations were carried out considering different values of the average plasma input power densities. A particular focus was given to the influence of the Zeldovich mechanism on
O
3
and
NO
X
production performing simulations where this reaction is not considered. The obtained results are shown and the role of vibrationally excited
N
2
molecules is discussed. The simulation results indicate also that
N
2
vibrational excitation, and more precisely the Zeldovich mechanism, has a larger effect on
O
3
and
NO
X
production at intermediate input power levels.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11090-024-10484-6</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-1973-0612</orcidid><orcidid>https://orcid.org/0000-0003-1527-2976</orcidid><orcidid>https://orcid.org/0000-0001-5896-6615</orcidid><orcidid>https://orcid.org/0000-0002-0990-8053</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-4324 |
ispartof | Plasma chemistry and plasma processing, 2024-07, Vol.44 (4), p.1575-1594 |
issn | 0272-4324 1572-8986 |
language | eng |
recordid | cdi_proquest_journals_3093886865 |
source | Springer Nature - Complete Springer Journals |
subjects | Atmospheric pressure Biomedical materials Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Classical Mechanics Dielectric barrier discharge Distribution functions Electric fields Electron energy distribution Equivalent circuits Excitation Inorganic Chemistry Mechanical Engineering Nitrogen dioxide Nitrogen plasma Original Paper Reaction kinetics Water chemistry |
title | Modeling Study of Chemical Kinetics and Vibrational Excitation in a Volumetric DBD in Humid Air at Atmospheric Pressure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A28%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Study%20of%20Chemical%20Kinetics%20and%20Vibrational%20Excitation%20in%20a%20Volumetric%20DBD%20in%20Humid%20Air%20at%20Atmospheric%20Pressure&rft.jtitle=Plasma%20chemistry%20and%20plasma%20processing&rft.au=Pierotti,%20Giacomo&rft.date=2024-07-01&rft.volume=44&rft.issue=4&rft.spage=1575&rft.epage=1594&rft.pages=1575-1594&rft.issn=0272-4324&rft.eissn=1572-8986&rft_id=info:doi/10.1007/s11090-024-10484-6&rft_dat=%3Cproquest_cross%3E3093886865%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3093886865&rft_id=info:pmid/&rfr_iscdi=true |