CamoTeacher: Dual-Rotation Consistency Learning for Semi-Supervised Camouflaged Object Detection

Existing camouflaged object detection~(COD) methods depend heavily on large-scale pixel-level annotations.However, acquiring such annotations is laborious due to the inherent camouflage characteristics of the objects.Semi-supervised learning offers a promising solution to this challenge.Yet, its app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Lai, Xunfa, Yang, Zhiyu, Hu, Jie, Zhang, Shengchuan, Cao, Liujuan, Jiang, Guannan, Wang, Zhiyu, Zhang, Songan, Ji, Rongrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lai, Xunfa
Yang, Zhiyu
Hu, Jie
Zhang, Shengchuan
Cao, Liujuan
Jiang, Guannan
Wang, Zhiyu
Zhang, Songan
Ji, Rongrong
description Existing camouflaged object detection~(COD) methods depend heavily on large-scale pixel-level annotations.However, acquiring such annotations is laborious due to the inherent camouflage characteristics of the objects.Semi-supervised learning offers a promising solution to this challenge.Yet, its application in COD is hindered by significant pseudo-label noise, both pixel-level and instance-level.We introduce CamoTeacher, a novel semi-supervised COD framework, utilizing Dual-Rotation Consistency Learning~(DRCL) to effectively address these noise issues.Specifically, DRCL minimizes pseudo-label noise by leveraging rotation views' consistency in pixel-level and instance-level.First, it employs Pixel-wise Consistency Learning~(PCL) to deal with pixel-level noise by reweighting the different parts within the pseudo-label.Second, Instance-wise Consistency Learning~(ICL) is used to adjust weights for pseudo-labels, which handles instance-level noise.Extensive experiments on four COD benchmark datasets demonstrate that the proposed CamoTeacher not only achieves state-of-the-art compared with semi-supervised learning methods, but also rivals established fully-supervised learning methods.Our code will be available soon.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3093677235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093677235</sourcerecordid><originalsourceid>FETCH-proquest_journals_30936772353</originalsourceid><addsrcrecordid>eNqNjN8KgjAcRkcQJOU7DLoerC21utWiiyBI723ZT5voZvsT9PYZ9ABdnQ--w5mggHG-Ips1YzMUWttSSlmcsCjiAbqmotcFiOoBZoczLzpy0U44qRVOtbLSOlDVG59AGCVVg2ttcA69JLkfwLykhTv-NnzdiWbc51sLlcMZuBFjZYGmtegshD_O0fKwL9IjGYx-erCubLU3arxKTrc8ThLGI_6f9QHo70T0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093677235</pqid></control><display><type>article</type><title>CamoTeacher: Dual-Rotation Consistency Learning for Semi-Supervised Camouflaged Object Detection</title><source>Free E- Journals</source><creator>Lai, Xunfa ; Yang, Zhiyu ; Hu, Jie ; Zhang, Shengchuan ; Cao, Liujuan ; Jiang, Guannan ; Wang, Zhiyu ; Zhang, Songan ; Ji, Rongrong</creator><creatorcontrib>Lai, Xunfa ; Yang, Zhiyu ; Hu, Jie ; Zhang, Shengchuan ; Cao, Liujuan ; Jiang, Guannan ; Wang, Zhiyu ; Zhang, Songan ; Ji, Rongrong</creatorcontrib><description>Existing camouflaged object detection~(COD) methods depend heavily on large-scale pixel-level annotations.However, acquiring such annotations is laborious due to the inherent camouflage characteristics of the objects.Semi-supervised learning offers a promising solution to this challenge.Yet, its application in COD is hindered by significant pseudo-label noise, both pixel-level and instance-level.We introduce CamoTeacher, a novel semi-supervised COD framework, utilizing Dual-Rotation Consistency Learning~(DRCL) to effectively address these noise issues.Specifically, DRCL minimizes pseudo-label noise by leveraging rotation views' consistency in pixel-level and instance-level.First, it employs Pixel-wise Consistency Learning~(PCL) to deal with pixel-level noise by reweighting the different parts within the pseudo-label.Second, Instance-wise Consistency Learning~(ICL) is used to adjust weights for pseudo-labels, which handles instance-level noise.Extensive experiments on four COD benchmark datasets demonstrate that the proposed CamoTeacher not only achieves state-of-the-art compared with semi-supervised learning methods, but also rivals established fully-supervised learning methods.Our code will be available soon.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annotations ; Labels ; Object recognition ; Pixels ; Rotation ; Semi-supervised learning</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Lai, Xunfa</creatorcontrib><creatorcontrib>Yang, Zhiyu</creatorcontrib><creatorcontrib>Hu, Jie</creatorcontrib><creatorcontrib>Zhang, Shengchuan</creatorcontrib><creatorcontrib>Cao, Liujuan</creatorcontrib><creatorcontrib>Jiang, Guannan</creatorcontrib><creatorcontrib>Wang, Zhiyu</creatorcontrib><creatorcontrib>Zhang, Songan</creatorcontrib><creatorcontrib>Ji, Rongrong</creatorcontrib><title>CamoTeacher: Dual-Rotation Consistency Learning for Semi-Supervised Camouflaged Object Detection</title><title>arXiv.org</title><description>Existing camouflaged object detection~(COD) methods depend heavily on large-scale pixel-level annotations.However, acquiring such annotations is laborious due to the inherent camouflage characteristics of the objects.Semi-supervised learning offers a promising solution to this challenge.Yet, its application in COD is hindered by significant pseudo-label noise, both pixel-level and instance-level.We introduce CamoTeacher, a novel semi-supervised COD framework, utilizing Dual-Rotation Consistency Learning~(DRCL) to effectively address these noise issues.Specifically, DRCL minimizes pseudo-label noise by leveraging rotation views' consistency in pixel-level and instance-level.First, it employs Pixel-wise Consistency Learning~(PCL) to deal with pixel-level noise by reweighting the different parts within the pseudo-label.Second, Instance-wise Consistency Learning~(ICL) is used to adjust weights for pseudo-labels, which handles instance-level noise.Extensive experiments on four COD benchmark datasets demonstrate that the proposed CamoTeacher not only achieves state-of-the-art compared with semi-supervised learning methods, but also rivals established fully-supervised learning methods.Our code will be available soon.</description><subject>Annotations</subject><subject>Labels</subject><subject>Object recognition</subject><subject>Pixels</subject><subject>Rotation</subject><subject>Semi-supervised learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjN8KgjAcRkcQJOU7DLoerC21utWiiyBI723ZT5voZvsT9PYZ9ABdnQ--w5mggHG-Ips1YzMUWttSSlmcsCjiAbqmotcFiOoBZoczLzpy0U44qRVOtbLSOlDVG59AGCVVg2ttcA69JLkfwLykhTv-NnzdiWbc51sLlcMZuBFjZYGmtegshD_O0fKwL9IjGYx-erCubLU3arxKTrc8ThLGI_6f9QHo70T0</recordid><startdate>20240815</startdate><enddate>20240815</enddate><creator>Lai, Xunfa</creator><creator>Yang, Zhiyu</creator><creator>Hu, Jie</creator><creator>Zhang, Shengchuan</creator><creator>Cao, Liujuan</creator><creator>Jiang, Guannan</creator><creator>Wang, Zhiyu</creator><creator>Zhang, Songan</creator><creator>Ji, Rongrong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240815</creationdate><title>CamoTeacher: Dual-Rotation Consistency Learning for Semi-Supervised Camouflaged Object Detection</title><author>Lai, Xunfa ; Yang, Zhiyu ; Hu, Jie ; Zhang, Shengchuan ; Cao, Liujuan ; Jiang, Guannan ; Wang, Zhiyu ; Zhang, Songan ; Ji, Rongrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30936772353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Labels</topic><topic>Object recognition</topic><topic>Pixels</topic><topic>Rotation</topic><topic>Semi-supervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Lai, Xunfa</creatorcontrib><creatorcontrib>Yang, Zhiyu</creatorcontrib><creatorcontrib>Hu, Jie</creatorcontrib><creatorcontrib>Zhang, Shengchuan</creatorcontrib><creatorcontrib>Cao, Liujuan</creatorcontrib><creatorcontrib>Jiang, Guannan</creatorcontrib><creatorcontrib>Wang, Zhiyu</creatorcontrib><creatorcontrib>Zhang, Songan</creatorcontrib><creatorcontrib>Ji, Rongrong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Xunfa</au><au>Yang, Zhiyu</au><au>Hu, Jie</au><au>Zhang, Shengchuan</au><au>Cao, Liujuan</au><au>Jiang, Guannan</au><au>Wang, Zhiyu</au><au>Zhang, Songan</au><au>Ji, Rongrong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>CamoTeacher: Dual-Rotation Consistency Learning for Semi-Supervised Camouflaged Object Detection</atitle><jtitle>arXiv.org</jtitle><date>2024-08-15</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Existing camouflaged object detection~(COD) methods depend heavily on large-scale pixel-level annotations.However, acquiring such annotations is laborious due to the inherent camouflage characteristics of the objects.Semi-supervised learning offers a promising solution to this challenge.Yet, its application in COD is hindered by significant pseudo-label noise, both pixel-level and instance-level.We introduce CamoTeacher, a novel semi-supervised COD framework, utilizing Dual-Rotation Consistency Learning~(DRCL) to effectively address these noise issues.Specifically, DRCL minimizes pseudo-label noise by leveraging rotation views' consistency in pixel-level and instance-level.First, it employs Pixel-wise Consistency Learning~(PCL) to deal with pixel-level noise by reweighting the different parts within the pseudo-label.Second, Instance-wise Consistency Learning~(ICL) is used to adjust weights for pseudo-labels, which handles instance-level noise.Extensive experiments on four COD benchmark datasets demonstrate that the proposed CamoTeacher not only achieves state-of-the-art compared with semi-supervised learning methods, but also rivals established fully-supervised learning methods.Our code will be available soon.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_3093677235
source Free E- Journals
subjects Annotations
Labels
Object recognition
Pixels
Rotation
Semi-supervised learning
title CamoTeacher: Dual-Rotation Consistency Learning for Semi-Supervised Camouflaged Object Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A21%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=CamoTeacher:%20Dual-Rotation%20Consistency%20Learning%20for%20Semi-Supervised%20Camouflaged%20Object%20Detection&rft.jtitle=arXiv.org&rft.au=Lai,%20Xunfa&rft.date=2024-08-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3093677235%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3093677235&rft_id=info:pmid/&rfr_iscdi=true