Nanotransfer Printing of Functional Nanomaterials on Electrospun Fibers for Wearable Healthcare Applications
With the advancement of functional textile technology, there is a growing demand for functional enhancements in textiles from both industrial and societal perspectives. Recently, nanopattern transfer technology has emerged as a potential approach for fabricating functional textiles. However, convent...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-08, Vol.34 (33), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 33 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Ha, Ji‐Hwan Ko, Jiwoo Ahn, Junseong Jeong, Yongrok Ahn, Jihyeon Hwang, Soonhyoung Jeon, Sohee Kim, Dahong Park, Su A Gu, Jimin Choi, Jungrak Han, Hyeonseok Han, Chankyu Kang, Byeongmin Kang, Byung‐Ho Cho, Seokjoo Kwon, Yeong Jae Kim, Cheolmin Choi, Sunkun Sim, Gi‐Dong Jeong, Jun‐Ho Park, Inkyu |
description | With the advancement of functional textile technology, there is a growing demand for functional enhancements in textiles from both industrial and societal perspectives. Recently, nanopattern transfer technology has emerged as a potential approach for fabricating functional textiles. However, conventional transfer methods have some limitations such as transfer difficulties on curved fiber surfaces, polymer residues, and delamination of transferred nanopatterns. In this study, an advanced nanopattern transfer method based on surface modification and thermoforming principles is applied to microscale electrospun fibers. This transfer method utilizes covalent bonding and mechanical interlocking between nanopatterns and the fibers without requiring extra adhesives. Various nanopatterns transferred electrospun fibers possess significant potential for diverse wearable healthcare applications. This work introduces two specific application scenarios in the field of wearable healthcare, both of which leverage the light: diagnostics and antimicrobials. Versatile textile with silver nanogap‐pattern detects glucose in sweat, diagnosing hypoglycemia and diabetes by shifting Raman peaks from 1071.0 to 1075.4 cm−1 for 0 to 150 µm glucose. Additionally, a bactericidal mask using visible light to induce the photocatalytic degradation effect of titanium dioxide and silver nanopatterns is developed. Bactericidal efficacy against Escherichia coli and Staphylococcus aureus is 99.9% due to photolysis from visible light irradiation.
This manuscript presents an innovative nanotransfer printing technique for the functionalization of electrospun textiles. By employing oxygen plasma treatment and a heat pressing, various nanopatterns can be effectively transferred onto electrospun fibers. This study anticipates that such versatile functional textiles will facilitate the diagnosis of glucose levels through the surface‐enhanced Raman scattering method and inhibit bacterial growth through photodegradation. |
doi_str_mv | 10.1002/adfm.202401404 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3093374589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093374589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2724-4ef1b3680d77b900e790de35575aa67104593ec4ba7ae64ce320378ee019bdcf3</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EEqWwMltiTnmOnTgZq0IpUvkYQLBZjvMCrlIn2IlQ_z2JisrI9N5wzpXuJeSSwYwBxNe6rLazGGIBTIA4IhOWsjTiEGfHh5-9n5KzEDYATEouJqR-1K7pvHahQk-fvXWddR-0qeiyd6azjdM1HZmt7tBbXQfaOHpbo-l8E9re0aUt0AdaNZ6-ofa6qJGuUNfdp9Ee6bxta2v0mBTOyUk1JODF752S1-Xty2IVrZ_u7hfzdWRiGYtIYMUKnmZQSlnkAChzKJEniUy0TiUDkeQcjSi01JgKgzwGLjNEYHlRmopPydU-t_XNV4-hU5um90OToDjknEuRZPlAzfaUGZoEj5Vqvd1qv1MM1LioGhdVh0UHId8L37bG3T-0mt8sH_7cH481e70</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093374589</pqid></control><display><type>article</type><title>Nanotransfer Printing of Functional Nanomaterials on Electrospun Fibers for Wearable Healthcare Applications</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ha, Ji‐Hwan ; Ko, Jiwoo ; Ahn, Junseong ; Jeong, Yongrok ; Ahn, Jihyeon ; Hwang, Soonhyoung ; Jeon, Sohee ; Kim, Dahong ; Park, Su A ; Gu, Jimin ; Choi, Jungrak ; Han, Hyeonseok ; Han, Chankyu ; Kang, Byeongmin ; Kang, Byung‐Ho ; Cho, Seokjoo ; Kwon, Yeong Jae ; Kim, Cheolmin ; Choi, Sunkun ; Sim, Gi‐Dong ; Jeong, Jun‐Ho ; Park, Inkyu</creator><creatorcontrib>Ha, Ji‐Hwan ; Ko, Jiwoo ; Ahn, Junseong ; Jeong, Yongrok ; Ahn, Jihyeon ; Hwang, Soonhyoung ; Jeon, Sohee ; Kim, Dahong ; Park, Su A ; Gu, Jimin ; Choi, Jungrak ; Han, Hyeonseok ; Han, Chankyu ; Kang, Byeongmin ; Kang, Byung‐Ho ; Cho, Seokjoo ; Kwon, Yeong Jae ; Kim, Cheolmin ; Choi, Sunkun ; Sim, Gi‐Dong ; Jeong, Jun‐Ho ; Park, Inkyu</creatorcontrib><description>With the advancement of functional textile technology, there is a growing demand for functional enhancements in textiles from both industrial and societal perspectives. Recently, nanopattern transfer technology has emerged as a potential approach for fabricating functional textiles. However, conventional transfer methods have some limitations such as transfer difficulties on curved fiber surfaces, polymer residues, and delamination of transferred nanopatterns. In this study, an advanced nanopattern transfer method based on surface modification and thermoforming principles is applied to microscale electrospun fibers. This transfer method utilizes covalent bonding and mechanical interlocking between nanopatterns and the fibers without requiring extra adhesives. Various nanopatterns transferred electrospun fibers possess significant potential for diverse wearable healthcare applications. This work introduces two specific application scenarios in the field of wearable healthcare, both of which leverage the light: diagnostics and antimicrobials. Versatile textile with silver nanogap‐pattern detects glucose in sweat, diagnosing hypoglycemia and diabetes by shifting Raman peaks from 1071.0 to 1075.4 cm−1 for 0 to 150 µm glucose. Additionally, a bactericidal mask using visible light to induce the photocatalytic degradation effect of titanium dioxide and silver nanopatterns is developed. Bactericidal efficacy against Escherichia coli and Staphylococcus aureus is 99.9% due to photolysis from visible light irradiation.
This manuscript presents an innovative nanotransfer printing technique for the functionalization of electrospun textiles. By employing oxygen plasma treatment and a heat pressing, various nanopatterns can be effectively transferred onto electrospun fibers. This study anticipates that such versatile functional textiles will facilitate the diagnosis of glucose levels through the surface‐enhanced Raman scattering method and inhibit bacterial growth through photodegradation.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202401404</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>bactericidal mask ; E coli ; Fibers ; Functional materials ; functional textile ; Glucose ; Health care ; Hypoglycemia ; Light irradiation ; Nanomaterials ; nanotransfer printing ; Photodegradation ; Photolysis ; sweat monitoring ; Textiles ; Thermoforming ; Titanium dioxide ; wearable healthcare ; Wearable technology</subject><ispartof>Advanced functional materials, 2024-08, Vol.34 (33), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2724-4ef1b3680d77b900e790de35575aa67104593ec4ba7ae64ce320378ee019bdcf3</cites><orcidid>0000-0002-1349-0761 ; 0000-0001-5499-1266 ; 0000-0001-6049-7504 ; 0000-0002-9867-7479 ; 0000-0001-5761-7739 ; 0000-0002-4090-5440 ; 0000-0002-0387-3654</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202401404$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202401404$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ha, Ji‐Hwan</creatorcontrib><creatorcontrib>Ko, Jiwoo</creatorcontrib><creatorcontrib>Ahn, Junseong</creatorcontrib><creatorcontrib>Jeong, Yongrok</creatorcontrib><creatorcontrib>Ahn, Jihyeon</creatorcontrib><creatorcontrib>Hwang, Soonhyoung</creatorcontrib><creatorcontrib>Jeon, Sohee</creatorcontrib><creatorcontrib>Kim, Dahong</creatorcontrib><creatorcontrib>Park, Su A</creatorcontrib><creatorcontrib>Gu, Jimin</creatorcontrib><creatorcontrib>Choi, Jungrak</creatorcontrib><creatorcontrib>Han, Hyeonseok</creatorcontrib><creatorcontrib>Han, Chankyu</creatorcontrib><creatorcontrib>Kang, Byeongmin</creatorcontrib><creatorcontrib>Kang, Byung‐Ho</creatorcontrib><creatorcontrib>Cho, Seokjoo</creatorcontrib><creatorcontrib>Kwon, Yeong Jae</creatorcontrib><creatorcontrib>Kim, Cheolmin</creatorcontrib><creatorcontrib>Choi, Sunkun</creatorcontrib><creatorcontrib>Sim, Gi‐Dong</creatorcontrib><creatorcontrib>Jeong, Jun‐Ho</creatorcontrib><creatorcontrib>Park, Inkyu</creatorcontrib><title>Nanotransfer Printing of Functional Nanomaterials on Electrospun Fibers for Wearable Healthcare Applications</title><title>Advanced functional materials</title><description>With the advancement of functional textile technology, there is a growing demand for functional enhancements in textiles from both industrial and societal perspectives. Recently, nanopattern transfer technology has emerged as a potential approach for fabricating functional textiles. However, conventional transfer methods have some limitations such as transfer difficulties on curved fiber surfaces, polymer residues, and delamination of transferred nanopatterns. In this study, an advanced nanopattern transfer method based on surface modification and thermoforming principles is applied to microscale electrospun fibers. This transfer method utilizes covalent bonding and mechanical interlocking between nanopatterns and the fibers without requiring extra adhesives. Various nanopatterns transferred electrospun fibers possess significant potential for diverse wearable healthcare applications. This work introduces two specific application scenarios in the field of wearable healthcare, both of which leverage the light: diagnostics and antimicrobials. Versatile textile with silver nanogap‐pattern detects glucose in sweat, diagnosing hypoglycemia and diabetes by shifting Raman peaks from 1071.0 to 1075.4 cm−1 for 0 to 150 µm glucose. Additionally, a bactericidal mask using visible light to induce the photocatalytic degradation effect of titanium dioxide and silver nanopatterns is developed. Bactericidal efficacy against Escherichia coli and Staphylococcus aureus is 99.9% due to photolysis from visible light irradiation.
This manuscript presents an innovative nanotransfer printing technique for the functionalization of electrospun textiles. By employing oxygen plasma treatment and a heat pressing, various nanopatterns can be effectively transferred onto electrospun fibers. This study anticipates that such versatile functional textiles will facilitate the diagnosis of glucose levels through the surface‐enhanced Raman scattering method and inhibit bacterial growth through photodegradation.</description><subject>bactericidal mask</subject><subject>E coli</subject><subject>Fibers</subject><subject>Functional materials</subject><subject>functional textile</subject><subject>Glucose</subject><subject>Health care</subject><subject>Hypoglycemia</subject><subject>Light irradiation</subject><subject>Nanomaterials</subject><subject>nanotransfer printing</subject><subject>Photodegradation</subject><subject>Photolysis</subject><subject>sweat monitoring</subject><subject>Textiles</subject><subject>Thermoforming</subject><subject>Titanium dioxide</subject><subject>wearable healthcare</subject><subject>Wearable technology</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAURS0EEqWwMltiTnmOnTgZq0IpUvkYQLBZjvMCrlIn2IlQ_z2JisrI9N5wzpXuJeSSwYwBxNe6rLazGGIBTIA4IhOWsjTiEGfHh5-9n5KzEDYATEouJqR-1K7pvHahQk-fvXWddR-0qeiyd6azjdM1HZmt7tBbXQfaOHpbo-l8E9re0aUt0AdaNZ6-ofa6qJGuUNfdp9Ee6bxta2v0mBTOyUk1JODF752S1-Xty2IVrZ_u7hfzdWRiGYtIYMUKnmZQSlnkAChzKJEniUy0TiUDkeQcjSi01JgKgzwGLjNEYHlRmopPydU-t_XNV4-hU5um90OToDjknEuRZPlAzfaUGZoEj5Vqvd1qv1MM1LioGhdVh0UHId8L37bG3T-0mt8sH_7cH481e70</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Ha, Ji‐Hwan</creator><creator>Ko, Jiwoo</creator><creator>Ahn, Junseong</creator><creator>Jeong, Yongrok</creator><creator>Ahn, Jihyeon</creator><creator>Hwang, Soonhyoung</creator><creator>Jeon, Sohee</creator><creator>Kim, Dahong</creator><creator>Park, Su A</creator><creator>Gu, Jimin</creator><creator>Choi, Jungrak</creator><creator>Han, Hyeonseok</creator><creator>Han, Chankyu</creator><creator>Kang, Byeongmin</creator><creator>Kang, Byung‐Ho</creator><creator>Cho, Seokjoo</creator><creator>Kwon, Yeong Jae</creator><creator>Kim, Cheolmin</creator><creator>Choi, Sunkun</creator><creator>Sim, Gi‐Dong</creator><creator>Jeong, Jun‐Ho</creator><creator>Park, Inkyu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1349-0761</orcidid><orcidid>https://orcid.org/0000-0001-5499-1266</orcidid><orcidid>https://orcid.org/0000-0001-6049-7504</orcidid><orcidid>https://orcid.org/0000-0002-9867-7479</orcidid><orcidid>https://orcid.org/0000-0001-5761-7739</orcidid><orcidid>https://orcid.org/0000-0002-4090-5440</orcidid><orcidid>https://orcid.org/0000-0002-0387-3654</orcidid></search><sort><creationdate>20240801</creationdate><title>Nanotransfer Printing of Functional Nanomaterials on Electrospun Fibers for Wearable Healthcare Applications</title><author>Ha, Ji‐Hwan ; Ko, Jiwoo ; Ahn, Junseong ; Jeong, Yongrok ; Ahn, Jihyeon ; Hwang, Soonhyoung ; Jeon, Sohee ; Kim, Dahong ; Park, Su A ; Gu, Jimin ; Choi, Jungrak ; Han, Hyeonseok ; Han, Chankyu ; Kang, Byeongmin ; Kang, Byung‐Ho ; Cho, Seokjoo ; Kwon, Yeong Jae ; Kim, Cheolmin ; Choi, Sunkun ; Sim, Gi‐Dong ; Jeong, Jun‐Ho ; Park, Inkyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2724-4ef1b3680d77b900e790de35575aa67104593ec4ba7ae64ce320378ee019bdcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>bactericidal mask</topic><topic>E coli</topic><topic>Fibers</topic><topic>Functional materials</topic><topic>functional textile</topic><topic>Glucose</topic><topic>Health care</topic><topic>Hypoglycemia</topic><topic>Light irradiation</topic><topic>Nanomaterials</topic><topic>nanotransfer printing</topic><topic>Photodegradation</topic><topic>Photolysis</topic><topic>sweat monitoring</topic><topic>Textiles</topic><topic>Thermoforming</topic><topic>Titanium dioxide</topic><topic>wearable healthcare</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ha, Ji‐Hwan</creatorcontrib><creatorcontrib>Ko, Jiwoo</creatorcontrib><creatorcontrib>Ahn, Junseong</creatorcontrib><creatorcontrib>Jeong, Yongrok</creatorcontrib><creatorcontrib>Ahn, Jihyeon</creatorcontrib><creatorcontrib>Hwang, Soonhyoung</creatorcontrib><creatorcontrib>Jeon, Sohee</creatorcontrib><creatorcontrib>Kim, Dahong</creatorcontrib><creatorcontrib>Park, Su A</creatorcontrib><creatorcontrib>Gu, Jimin</creatorcontrib><creatorcontrib>Choi, Jungrak</creatorcontrib><creatorcontrib>Han, Hyeonseok</creatorcontrib><creatorcontrib>Han, Chankyu</creatorcontrib><creatorcontrib>Kang, Byeongmin</creatorcontrib><creatorcontrib>Kang, Byung‐Ho</creatorcontrib><creatorcontrib>Cho, Seokjoo</creatorcontrib><creatorcontrib>Kwon, Yeong Jae</creatorcontrib><creatorcontrib>Kim, Cheolmin</creatorcontrib><creatorcontrib>Choi, Sunkun</creatorcontrib><creatorcontrib>Sim, Gi‐Dong</creatorcontrib><creatorcontrib>Jeong, Jun‐Ho</creatorcontrib><creatorcontrib>Park, Inkyu</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ha, Ji‐Hwan</au><au>Ko, Jiwoo</au><au>Ahn, Junseong</au><au>Jeong, Yongrok</au><au>Ahn, Jihyeon</au><au>Hwang, Soonhyoung</au><au>Jeon, Sohee</au><au>Kim, Dahong</au><au>Park, Su A</au><au>Gu, Jimin</au><au>Choi, Jungrak</au><au>Han, Hyeonseok</au><au>Han, Chankyu</au><au>Kang, Byeongmin</au><au>Kang, Byung‐Ho</au><au>Cho, Seokjoo</au><au>Kwon, Yeong Jae</au><au>Kim, Cheolmin</au><au>Choi, Sunkun</au><au>Sim, Gi‐Dong</au><au>Jeong, Jun‐Ho</au><au>Park, Inkyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanotransfer Printing of Functional Nanomaterials on Electrospun Fibers for Wearable Healthcare Applications</atitle><jtitle>Advanced functional materials</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>34</volume><issue>33</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>With the advancement of functional textile technology, there is a growing demand for functional enhancements in textiles from both industrial and societal perspectives. Recently, nanopattern transfer technology has emerged as a potential approach for fabricating functional textiles. However, conventional transfer methods have some limitations such as transfer difficulties on curved fiber surfaces, polymer residues, and delamination of transferred nanopatterns. In this study, an advanced nanopattern transfer method based on surface modification and thermoforming principles is applied to microscale electrospun fibers. This transfer method utilizes covalent bonding and mechanical interlocking between nanopatterns and the fibers without requiring extra adhesives. Various nanopatterns transferred electrospun fibers possess significant potential for diverse wearable healthcare applications. This work introduces two specific application scenarios in the field of wearable healthcare, both of which leverage the light: diagnostics and antimicrobials. Versatile textile with silver nanogap‐pattern detects glucose in sweat, diagnosing hypoglycemia and diabetes by shifting Raman peaks from 1071.0 to 1075.4 cm−1 for 0 to 150 µm glucose. Additionally, a bactericidal mask using visible light to induce the photocatalytic degradation effect of titanium dioxide and silver nanopatterns is developed. Bactericidal efficacy against Escherichia coli and Staphylococcus aureus is 99.9% due to photolysis from visible light irradiation.
This manuscript presents an innovative nanotransfer printing technique for the functionalization of electrospun textiles. By employing oxygen plasma treatment and a heat pressing, various nanopatterns can be effectively transferred onto electrospun fibers. This study anticipates that such versatile functional textiles will facilitate the diagnosis of glucose levels through the surface‐enhanced Raman scattering method and inhibit bacterial growth through photodegradation.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202401404</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1349-0761</orcidid><orcidid>https://orcid.org/0000-0001-5499-1266</orcidid><orcidid>https://orcid.org/0000-0001-6049-7504</orcidid><orcidid>https://orcid.org/0000-0002-9867-7479</orcidid><orcidid>https://orcid.org/0000-0001-5761-7739</orcidid><orcidid>https://orcid.org/0000-0002-4090-5440</orcidid><orcidid>https://orcid.org/0000-0002-0387-3654</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-08, Vol.34 (33), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_3093374589 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | bactericidal mask E coli Fibers Functional materials functional textile Glucose Health care Hypoglycemia Light irradiation Nanomaterials nanotransfer printing Photodegradation Photolysis sweat monitoring Textiles Thermoforming Titanium dioxide wearable healthcare Wearable technology |
title | Nanotransfer Printing of Functional Nanomaterials on Electrospun Fibers for Wearable Healthcare Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A16%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanotransfer%20Printing%20of%20Functional%20Nanomaterials%20on%20Electrospun%20Fibers%20for%20Wearable%20Healthcare%20Applications&rft.jtitle=Advanced%20functional%20materials&rft.au=Ha,%20Ji%E2%80%90Hwan&rft.date=2024-08-01&rft.volume=34&rft.issue=33&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202401404&rft_dat=%3Cproquest_cross%3E3093374589%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3093374589&rft_id=info:pmid/&rfr_iscdi=true |