EFTNet: an efficient fine-tuning method for few-shot segmentation

Few-shot segmentation (FSS) aims to segment novel classes given a small number of labeled samples. Most of the existing studies do not fine-tune the model during meta-testing, thus biasing the model towards the base classes and preventing the prediction of novel classes. Other studies only use suppo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2024-10, Vol.54 (19), p.9488-9507
Hauptverfasser: Li, Jiaguang, Wang, Yubo, Gao, Zihan, Wei, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9507
container_issue 19
container_start_page 9488
container_title Applied intelligence (Dordrecht, Netherlands)
container_volume 54
creator Li, Jiaguang
Wang, Yubo
Gao, Zihan
Wei, Ying
description Few-shot segmentation (FSS) aims to segment novel classes given a small number of labeled samples. Most of the existing studies do not fine-tune the model during meta-testing, thus biasing the model towards the base classes and preventing the prediction of novel classes. Other studies only use support images for fine-tuning, which biases the model towards the support images rather than the target query images, especially when there is a large difference between the support and the query images. To alleviate these issues, we propose an e ̲ fficient f ̲ ine- t ̲ uning network (EFTNet) that uses unlabeled query images and predicted pseudo labels to fine-tune the trained model parameters during meta-testing, which can bias the model towards the target query images. In addition, we design a query-to-support module, a support-to-query module, and a discrimination module to evaluate which fine-tuning round the model achieves optimal results. Moreover, the query-to-support module also takes the query images and their pseudo masks as part of the support images and support masks, which causes the prototypes to contain query information and tend to obtain better predictions. As a new meta-testing scheme, our EFTNet can be easily combined with existing studies and greatly improve their model performance without repeating the meta-training phase. Many experiments on PASCAL- 5 i and COCO- 20 i prove the effectiveness of our EFTNet. The EFTNet also achieves new state-of-the-art performance. Codes are available at https://github.com/Jiaguang-NEU/EFTNet .
doi_str_mv 10.1007/s10489-024-05582-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3093314141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093314141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-502edce907b81957b5593a26bcfeb1329ee5e1736c17dbefb661272f981126863</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4GnBc3SSbJKNt1JaFUQvFbyF3e2k3WKzNUkR-_RGV_Amc5jDfP8_8BFyyeCaAeibyKCsDAVeUpCy4vRwREZMakF1afQxGYHJJ6XM6yk5i3EDAEIAG5HJbL54wnRb1L5A57q2Q58K13mkae87vyq2mNb9snB9KBx-0LjuUxFxtc1cnbren5MTV79FvPjdY_Iyny2m9_Tx-e5hOnmkLQdIVALHZYsGdFMxI3UjpRE1V03rsGGCG0SJTAvVMr1s0DVKMa65MxVjXFVKjMnV0LsL_fseY7Kbfh98fmkFGCFYmSdTfKDa0McY0Nld6LZ1-LQM7LcqO6iyWZX9UWUPOSSGUMywX2H4q_4n9QUwRWuN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093314141</pqid></control><display><type>article</type><title>EFTNet: an efficient fine-tuning method for few-shot segmentation</title><source>Springer Nature - Complete Springer Journals</source><creator>Li, Jiaguang ; Wang, Yubo ; Gao, Zihan ; Wei, Ying</creator><creatorcontrib>Li, Jiaguang ; Wang, Yubo ; Gao, Zihan ; Wei, Ying</creatorcontrib><description>Few-shot segmentation (FSS) aims to segment novel classes given a small number of labeled samples. Most of the existing studies do not fine-tune the model during meta-testing, thus biasing the model towards the base classes and preventing the prediction of novel classes. Other studies only use support images for fine-tuning, which biases the model towards the support images rather than the target query images, especially when there is a large difference between the support and the query images. To alleviate these issues, we propose an e ̲ fficient f ̲ ine- t ̲ uning network (EFTNet) that uses unlabeled query images and predicted pseudo labels to fine-tune the trained model parameters during meta-testing, which can bias the model towards the target query images. In addition, we design a query-to-support module, a support-to-query module, and a discrimination module to evaluate which fine-tuning round the model achieves optimal results. Moreover, the query-to-support module also takes the query images and their pseudo masks as part of the support images and support masks, which causes the prototypes to contain query information and tend to obtain better predictions. As a new meta-testing scheme, our EFTNet can be easily combined with existing studies and greatly improve their model performance without repeating the meta-training phase. Many experiments on PASCAL- 5 i and COCO- 20 i prove the effectiveness of our EFTNet. The EFTNet also achieves new state-of-the-art performance. Codes are available at https://github.com/Jiaguang-NEU/EFTNet .</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-024-05582-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Bias ; Computer Science ; Computer vision ; Machines ; Manufacturing ; Masks ; Mechanical Engineering ; Modules ; Predictions ; Processes ; Queries ; Semantics</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2024-10, Vol.54 (19), p.9488-9507</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-502edce907b81957b5593a26bcfeb1329ee5e1736c17dbefb661272f981126863</cites><orcidid>0000-0003-0915-5378</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-024-05582-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-024-05582-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Li, Jiaguang</creatorcontrib><creatorcontrib>Wang, Yubo</creatorcontrib><creatorcontrib>Gao, Zihan</creatorcontrib><creatorcontrib>Wei, Ying</creatorcontrib><title>EFTNet: an efficient fine-tuning method for few-shot segmentation</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>Few-shot segmentation (FSS) aims to segment novel classes given a small number of labeled samples. Most of the existing studies do not fine-tune the model during meta-testing, thus biasing the model towards the base classes and preventing the prediction of novel classes. Other studies only use support images for fine-tuning, which biases the model towards the support images rather than the target query images, especially when there is a large difference between the support and the query images. To alleviate these issues, we propose an e ̲ fficient f ̲ ine- t ̲ uning network (EFTNet) that uses unlabeled query images and predicted pseudo labels to fine-tune the trained model parameters during meta-testing, which can bias the model towards the target query images. In addition, we design a query-to-support module, a support-to-query module, and a discrimination module to evaluate which fine-tuning round the model achieves optimal results. Moreover, the query-to-support module also takes the query images and their pseudo masks as part of the support images and support masks, which causes the prototypes to contain query information and tend to obtain better predictions. As a new meta-testing scheme, our EFTNet can be easily combined with existing studies and greatly improve their model performance without repeating the meta-training phase. Many experiments on PASCAL- 5 i and COCO- 20 i prove the effectiveness of our EFTNet. The EFTNet also achieves new state-of-the-art performance. Codes are available at https://github.com/Jiaguang-NEU/EFTNet .</description><subject>Artificial Intelligence</subject><subject>Bias</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Masks</subject><subject>Mechanical Engineering</subject><subject>Modules</subject><subject>Predictions</subject><subject>Processes</subject><subject>Queries</subject><subject>Semantics</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4GnBc3SSbJKNt1JaFUQvFbyF3e2k3WKzNUkR-_RGV_Amc5jDfP8_8BFyyeCaAeibyKCsDAVeUpCy4vRwREZMakF1afQxGYHJJ6XM6yk5i3EDAEIAG5HJbL54wnRb1L5A57q2Q58K13mkae87vyq2mNb9snB9KBx-0LjuUxFxtc1cnbren5MTV79FvPjdY_Iyny2m9_Tx-e5hOnmkLQdIVALHZYsGdFMxI3UjpRE1V03rsGGCG0SJTAvVMr1s0DVKMa65MxVjXFVKjMnV0LsL_fseY7Kbfh98fmkFGCFYmSdTfKDa0McY0Nld6LZ1-LQM7LcqO6iyWZX9UWUPOSSGUMywX2H4q_4n9QUwRWuN</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Li, Jiaguang</creator><creator>Wang, Yubo</creator><creator>Gao, Zihan</creator><creator>Wei, Ying</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0915-5378</orcidid></search><sort><creationdate>20241001</creationdate><title>EFTNet: an efficient fine-tuning method for few-shot segmentation</title><author>Li, Jiaguang ; Wang, Yubo ; Gao, Zihan ; Wei, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-502edce907b81957b5593a26bcfeb1329ee5e1736c17dbefb661272f981126863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Bias</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Masks</topic><topic>Mechanical Engineering</topic><topic>Modules</topic><topic>Predictions</topic><topic>Processes</topic><topic>Queries</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jiaguang</creatorcontrib><creatorcontrib>Wang, Yubo</creatorcontrib><creatorcontrib>Gao, Zihan</creatorcontrib><creatorcontrib>Wei, Ying</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jiaguang</au><au>Wang, Yubo</au><au>Gao, Zihan</au><au>Wei, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EFTNet: an efficient fine-tuning method for few-shot segmentation</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>54</volume><issue>19</issue><spage>9488</spage><epage>9507</epage><pages>9488-9507</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>Few-shot segmentation (FSS) aims to segment novel classes given a small number of labeled samples. Most of the existing studies do not fine-tune the model during meta-testing, thus biasing the model towards the base classes and preventing the prediction of novel classes. Other studies only use support images for fine-tuning, which biases the model towards the support images rather than the target query images, especially when there is a large difference between the support and the query images. To alleviate these issues, we propose an e ̲ fficient f ̲ ine- t ̲ uning network (EFTNet) that uses unlabeled query images and predicted pseudo labels to fine-tune the trained model parameters during meta-testing, which can bias the model towards the target query images. In addition, we design a query-to-support module, a support-to-query module, and a discrimination module to evaluate which fine-tuning round the model achieves optimal results. Moreover, the query-to-support module also takes the query images and their pseudo masks as part of the support images and support masks, which causes the prototypes to contain query information and tend to obtain better predictions. As a new meta-testing scheme, our EFTNet can be easily combined with existing studies and greatly improve their model performance without repeating the meta-training phase. Many experiments on PASCAL- 5 i and COCO- 20 i prove the effectiveness of our EFTNet. The EFTNet also achieves new state-of-the-art performance. Codes are available at https://github.com/Jiaguang-NEU/EFTNet .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-024-05582-z</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-0915-5378</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-669X
ispartof Applied intelligence (Dordrecht, Netherlands), 2024-10, Vol.54 (19), p.9488-9507
issn 0924-669X
1573-7497
language eng
recordid cdi_proquest_journals_3093314141
source Springer Nature - Complete Springer Journals
subjects Artificial Intelligence
Bias
Computer Science
Computer vision
Machines
Manufacturing
Masks
Mechanical Engineering
Modules
Predictions
Processes
Queries
Semantics
title EFTNet: an efficient fine-tuning method for few-shot segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A09%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EFTNet:%20an%20efficient%20fine-tuning%20method%20for%20few-shot%20segmentation&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Li,%20Jiaguang&rft.date=2024-10-01&rft.volume=54&rft.issue=19&rft.spage=9488&rft.epage=9507&rft.pages=9488-9507&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-024-05582-z&rft_dat=%3Cproquest_cross%3E3093314141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3093314141&rft_id=info:pmid/&rfr_iscdi=true