BiLSTM and Attention-Based Modulation Classification of Realistic Wireless Signals
This work proposes a novel and efficient quadstream BiLSTM-Attention network, abbreviated as QSLA network, for robust automatic modulation classification (AMC) of wireless signals. The proposed model exploits multiple representations of the wireless signal as inputs to the network and the feature ex...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Udaiwal, Rohit Baishya, Nayan Gupta, Yash Manoj, B R |
description | This work proposes a novel and efficient quadstream BiLSTM-Attention network, abbreviated as QSLA network, for robust automatic modulation classification (AMC) of wireless signals. The proposed model exploits multiple representations of the wireless signal as inputs to the network and the feature extraction process combines convolutional and BiLSTM layers for processing the spatial and temporal features of the signal, respectively. An attention layer is used after the BiLSTM layer to emphasize the important temporal features. The experimental results on the recent and realistic RML22 dataset demonstrate the superior performance of the proposed model with an accuracy up to around 99%. The model is compared with other benchmark models in the literature in terms of classification accuracy, computational complexity, memory usage, and training time to show the effectiveness of our proposed approach. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3093280814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093280814</sourcerecordid><originalsourceid>FETCH-proquest_journals_30932808143</originalsourceid><addsrcrecordid>eNqNisEKgkAUAJcgSMp_WOgsrLtadkwpOuTFhI6y6DOeLLvlW_-_pD6g0zDDLFgglYqjLJFyxUKiQQghd3uZpipgVY7XW11ybTt-9B6sR2ejXBN0vHTdZPQceGE0EfbYftX1vAJtkDy2_I4jGCDiN3xYbWjDlv0HEP64ZtvzqS4u0XN0rwnIN4ObxvlslDgomYksTtR_1xupGj9f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093280814</pqid></control><display><type>article</type><title>BiLSTM and Attention-Based Modulation Classification of Realistic Wireless Signals</title><source>Free E- Journals</source><creator>Udaiwal, Rohit ; Baishya, Nayan ; Gupta, Yash ; Manoj, B R</creator><creatorcontrib>Udaiwal, Rohit ; Baishya, Nayan ; Gupta, Yash ; Manoj, B R</creatorcontrib><description>This work proposes a novel and efficient quadstream BiLSTM-Attention network, abbreviated as QSLA network, for robust automatic modulation classification (AMC) of wireless signals. The proposed model exploits multiple representations of the wireless signal as inputs to the network and the feature extraction process combines convolutional and BiLSTM layers for processing the spatial and temporal features of the signal, respectively. An attention layer is used after the BiLSTM layer to emphasize the important temporal features. The experimental results on the recent and realistic RML22 dataset demonstrate the superior performance of the proposed model with an accuracy up to around 99%. The model is compared with other benchmark models in the literature in terms of classification accuracy, computational complexity, memory usage, and training time to show the effectiveness of our proposed approach.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Feature extraction ; Modulation ; Signal classification ; Signal processing</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Udaiwal, Rohit</creatorcontrib><creatorcontrib>Baishya, Nayan</creatorcontrib><creatorcontrib>Gupta, Yash</creatorcontrib><creatorcontrib>Manoj, B R</creatorcontrib><title>BiLSTM and Attention-Based Modulation Classification of Realistic Wireless Signals</title><title>arXiv.org</title><description>This work proposes a novel and efficient quadstream BiLSTM-Attention network, abbreviated as QSLA network, for robust automatic modulation classification (AMC) of wireless signals. The proposed model exploits multiple representations of the wireless signal as inputs to the network and the feature extraction process combines convolutional and BiLSTM layers for processing the spatial and temporal features of the signal, respectively. An attention layer is used after the BiLSTM layer to emphasize the important temporal features. The experimental results on the recent and realistic RML22 dataset demonstrate the superior performance of the proposed model with an accuracy up to around 99%. The model is compared with other benchmark models in the literature in terms of classification accuracy, computational complexity, memory usage, and training time to show the effectiveness of our proposed approach.</description><subject>Accuracy</subject><subject>Feature extraction</subject><subject>Modulation</subject><subject>Signal classification</subject><subject>Signal processing</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNisEKgkAUAJcgSMp_WOgsrLtadkwpOuTFhI6y6DOeLLvlW_-_pD6g0zDDLFgglYqjLJFyxUKiQQghd3uZpipgVY7XW11ybTt-9B6sR2ejXBN0vHTdZPQceGE0EfbYftX1vAJtkDy2_I4jGCDiN3xYbWjDlv0HEP64ZtvzqS4u0XN0rwnIN4ObxvlslDgomYksTtR_1xupGj9f</recordid><startdate>20240814</startdate><enddate>20240814</enddate><creator>Udaiwal, Rohit</creator><creator>Baishya, Nayan</creator><creator>Gupta, Yash</creator><creator>Manoj, B R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240814</creationdate><title>BiLSTM and Attention-Based Modulation Classification of Realistic Wireless Signals</title><author>Udaiwal, Rohit ; Baishya, Nayan ; Gupta, Yash ; Manoj, B R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30932808143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Feature extraction</topic><topic>Modulation</topic><topic>Signal classification</topic><topic>Signal processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Udaiwal, Rohit</creatorcontrib><creatorcontrib>Baishya, Nayan</creatorcontrib><creatorcontrib>Gupta, Yash</creatorcontrib><creatorcontrib>Manoj, B R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Udaiwal, Rohit</au><au>Baishya, Nayan</au><au>Gupta, Yash</au><au>Manoj, B R</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>BiLSTM and Attention-Based Modulation Classification of Realistic Wireless Signals</atitle><jtitle>arXiv.org</jtitle><date>2024-08-14</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This work proposes a novel and efficient quadstream BiLSTM-Attention network, abbreviated as QSLA network, for robust automatic modulation classification (AMC) of wireless signals. The proposed model exploits multiple representations of the wireless signal as inputs to the network and the feature extraction process combines convolutional and BiLSTM layers for processing the spatial and temporal features of the signal, respectively. An attention layer is used after the BiLSTM layer to emphasize the important temporal features. The experimental results on the recent and realistic RML22 dataset demonstrate the superior performance of the proposed model with an accuracy up to around 99%. The model is compared with other benchmark models in the literature in terms of classification accuracy, computational complexity, memory usage, and training time to show the effectiveness of our proposed approach.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3093280814 |
source | Free E- Journals |
subjects | Accuracy Feature extraction Modulation Signal classification Signal processing |
title | BiLSTM and Attention-Based Modulation Classification of Realistic Wireless Signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A09%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=BiLSTM%20and%20Attention-Based%20Modulation%20Classification%20of%20Realistic%20Wireless%20Signals&rft.jtitle=arXiv.org&rft.au=Udaiwal,%20Rohit&rft.date=2024-08-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3093280814%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3093280814&rft_id=info:pmid/&rfr_iscdi=true |