BiLSTM and Attention-Based Modulation Classification of Realistic Wireless Signals

This work proposes a novel and efficient quadstream BiLSTM-Attention network, abbreviated as QSLA network, for robust automatic modulation classification (AMC) of wireless signals. The proposed model exploits multiple representations of the wireless signal as inputs to the network and the feature ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Udaiwal, Rohit, Baishya, Nayan, Gupta, Yash, Manoj, B R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Udaiwal, Rohit
Baishya, Nayan
Gupta, Yash
Manoj, B R
description This work proposes a novel and efficient quadstream BiLSTM-Attention network, abbreviated as QSLA network, for robust automatic modulation classification (AMC) of wireless signals. The proposed model exploits multiple representations of the wireless signal as inputs to the network and the feature extraction process combines convolutional and BiLSTM layers for processing the spatial and temporal features of the signal, respectively. An attention layer is used after the BiLSTM layer to emphasize the important temporal features. The experimental results on the recent and realistic RML22 dataset demonstrate the superior performance of the proposed model with an accuracy up to around 99%. The model is compared with other benchmark models in the literature in terms of classification accuracy, computational complexity, memory usage, and training time to show the effectiveness of our proposed approach.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3093280814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093280814</sourcerecordid><originalsourceid>FETCH-proquest_journals_30932808143</originalsourceid><addsrcrecordid>eNqNisEKgkAUAJcgSMp_WOgsrLtadkwpOuTFhI6y6DOeLLvlW_-_pD6g0zDDLFgglYqjLJFyxUKiQQghd3uZpipgVY7XW11ybTt-9B6sR2ejXBN0vHTdZPQceGE0EfbYftX1vAJtkDy2_I4jGCDiN3xYbWjDlv0HEP64ZtvzqS4u0XN0rwnIN4ObxvlslDgomYksTtR_1xupGj9f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093280814</pqid></control><display><type>article</type><title>BiLSTM and Attention-Based Modulation Classification of Realistic Wireless Signals</title><source>Free E- Journals</source><creator>Udaiwal, Rohit ; Baishya, Nayan ; Gupta, Yash ; Manoj, B R</creator><creatorcontrib>Udaiwal, Rohit ; Baishya, Nayan ; Gupta, Yash ; Manoj, B R</creatorcontrib><description>This work proposes a novel and efficient quadstream BiLSTM-Attention network, abbreviated as QSLA network, for robust automatic modulation classification (AMC) of wireless signals. The proposed model exploits multiple representations of the wireless signal as inputs to the network and the feature extraction process combines convolutional and BiLSTM layers for processing the spatial and temporal features of the signal, respectively. An attention layer is used after the BiLSTM layer to emphasize the important temporal features. The experimental results on the recent and realistic RML22 dataset demonstrate the superior performance of the proposed model with an accuracy up to around 99%. The model is compared with other benchmark models in the literature in terms of classification accuracy, computational complexity, memory usage, and training time to show the effectiveness of our proposed approach.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Feature extraction ; Modulation ; Signal classification ; Signal processing</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Udaiwal, Rohit</creatorcontrib><creatorcontrib>Baishya, Nayan</creatorcontrib><creatorcontrib>Gupta, Yash</creatorcontrib><creatorcontrib>Manoj, B R</creatorcontrib><title>BiLSTM and Attention-Based Modulation Classification of Realistic Wireless Signals</title><title>arXiv.org</title><description>This work proposes a novel and efficient quadstream BiLSTM-Attention network, abbreviated as QSLA network, for robust automatic modulation classification (AMC) of wireless signals. The proposed model exploits multiple representations of the wireless signal as inputs to the network and the feature extraction process combines convolutional and BiLSTM layers for processing the spatial and temporal features of the signal, respectively. An attention layer is used after the BiLSTM layer to emphasize the important temporal features. The experimental results on the recent and realistic RML22 dataset demonstrate the superior performance of the proposed model with an accuracy up to around 99%. The model is compared with other benchmark models in the literature in terms of classification accuracy, computational complexity, memory usage, and training time to show the effectiveness of our proposed approach.</description><subject>Accuracy</subject><subject>Feature extraction</subject><subject>Modulation</subject><subject>Signal classification</subject><subject>Signal processing</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNisEKgkAUAJcgSMp_WOgsrLtadkwpOuTFhI6y6DOeLLvlW_-_pD6g0zDDLFgglYqjLJFyxUKiQQghd3uZpipgVY7XW11ybTt-9B6sR2ejXBN0vHTdZPQceGE0EfbYftX1vAJtkDy2_I4jGCDiN3xYbWjDlv0HEP64ZtvzqS4u0XN0rwnIN4ObxvlslDgomYksTtR_1xupGj9f</recordid><startdate>20240814</startdate><enddate>20240814</enddate><creator>Udaiwal, Rohit</creator><creator>Baishya, Nayan</creator><creator>Gupta, Yash</creator><creator>Manoj, B R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240814</creationdate><title>BiLSTM and Attention-Based Modulation Classification of Realistic Wireless Signals</title><author>Udaiwal, Rohit ; Baishya, Nayan ; Gupta, Yash ; Manoj, B R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30932808143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Feature extraction</topic><topic>Modulation</topic><topic>Signal classification</topic><topic>Signal processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Udaiwal, Rohit</creatorcontrib><creatorcontrib>Baishya, Nayan</creatorcontrib><creatorcontrib>Gupta, Yash</creatorcontrib><creatorcontrib>Manoj, B R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Udaiwal, Rohit</au><au>Baishya, Nayan</au><au>Gupta, Yash</au><au>Manoj, B R</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>BiLSTM and Attention-Based Modulation Classification of Realistic Wireless Signals</atitle><jtitle>arXiv.org</jtitle><date>2024-08-14</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This work proposes a novel and efficient quadstream BiLSTM-Attention network, abbreviated as QSLA network, for robust automatic modulation classification (AMC) of wireless signals. The proposed model exploits multiple representations of the wireless signal as inputs to the network and the feature extraction process combines convolutional and BiLSTM layers for processing the spatial and temporal features of the signal, respectively. An attention layer is used after the BiLSTM layer to emphasize the important temporal features. The experimental results on the recent and realistic RML22 dataset demonstrate the superior performance of the proposed model with an accuracy up to around 99%. The model is compared with other benchmark models in the literature in terms of classification accuracy, computational complexity, memory usage, and training time to show the effectiveness of our proposed approach.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_3093280814
source Free E- Journals
subjects Accuracy
Feature extraction
Modulation
Signal classification
Signal processing
title BiLSTM and Attention-Based Modulation Classification of Realistic Wireless Signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A09%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=BiLSTM%20and%20Attention-Based%20Modulation%20Classification%20of%20Realistic%20Wireless%20Signals&rft.jtitle=arXiv.org&rft.au=Udaiwal,%20Rohit&rft.date=2024-08-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3093280814%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3093280814&rft_id=info:pmid/&rfr_iscdi=true