Robust Adaptive Beamforming Based on Covariance Matrix Reconstruction with Gaussian Random Dimensionality Reduction
The performance of adaptive beamforming will deteriorate severely under small sample support, especially when the number of snapshots is smaller than the number of sensors. In this paper, we propose an effective algorithm for robust adaptive beamforming under small sample. Firstly, we utilize standa...
Gespeichert in:
Veröffentlicht in: | Circuits, systems, and signal processing systems, and signal processing, 2024-09, Vol.43 (9), p.6035-6046 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6046 |
---|---|
container_issue | 9 |
container_start_page | 6035 |
container_title | Circuits, systems, and signal processing |
container_volume | 43 |
creator | Zhang, Jieke Zheng, Zhi Wang, Cheng |
description | The performance of adaptive beamforming will deteriorate severely under small sample support, especially when the number of snapshots is smaller than the number of sensors. In this paper, we propose an effective algorithm for robust adaptive beamforming under small sample. Firstly, we utilize standard Guassian random matrices to construct projection matrices for dimension reduction of sample covariance matrix (SCM) and steering vector (SV). Subsequently, the dimensionality-reduced SCM and SV are used to obtain more accurate Capon power spectrum in the case of small sample. By integrating the corresponding Capon power spectrum over the angular sector without desired signal, the interference-plus-noise covariance matrix (INCM) is then reconstructed. Moreover, the SV of desired signal is estimated by solving a quadratic programming problem. Finally, the weight vector of the beamformer is calculated based on the reconstructed INCM and the estimated SV. Simulation results demonstrate the effectiveness and robustness of the proposed algorithm. |
doi_str_mv | 10.1007/s00034-024-02742-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3092999165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092999165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-f7a0e7b4e045f537208d93e0cf15fd10de6ebd21dd722441e21702fcff5242473</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4CngeXWSzTa7x7ZqFRShKHgL6SapKd1NTbK1fXtTV_DmYRiY-b5h-BG6JHBNAPhNAICcZUAPxRnNdkdoQIqcZEXJy2M0SNMyg5K8n6KzEFYApGIVHaAwd4suRDxWchPtVuOJlo1xvrHtEk9k0Aq7Fk_dVnor21rjZxm93eG5rl0bou_qaBPwZeMHnskuhEThuWyVa_CtbXQb0lqubdwnRfX0OToxch30xW8forf7u9fpQ_b0Mnucjp-ymgLEzHAJmi-YBlaYIucUSlXlGmpDCqMIKD3SC0WJUpxSxoimhAM1tTEFZZTxfIiu-rsb7z47HaJYuc6nb4LIoaJVVZFRkSjaU7V3IXhtxMbbRvq9ICAO4Yo-XJHCFT_hil2S8l4KCW6X2v-d_sf6Bp_Nf0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092999165</pqid></control><display><type>article</type><title>Robust Adaptive Beamforming Based on Covariance Matrix Reconstruction with Gaussian Random Dimensionality Reduction</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Jieke ; Zheng, Zhi ; Wang, Cheng</creator><creatorcontrib>Zhang, Jieke ; Zheng, Zhi ; Wang, Cheng</creatorcontrib><description>The performance of adaptive beamforming will deteriorate severely under small sample support, especially when the number of snapshots is smaller than the number of sensors. In this paper, we propose an effective algorithm for robust adaptive beamforming under small sample. Firstly, we utilize standard Guassian random matrices to construct projection matrices for dimension reduction of sample covariance matrix (SCM) and steering vector (SV). Subsequently, the dimensionality-reduced SCM and SV are used to obtain more accurate Capon power spectrum in the case of small sample. By integrating the corresponding Capon power spectrum over the angular sector without desired signal, the interference-plus-noise covariance matrix (INCM) is then reconstructed. Moreover, the SV of desired signal is estimated by solving a quadratic programming problem. Finally, the weight vector of the beamformer is calculated based on the reconstructed INCM and the estimated SV. Simulation results demonstrate the effectiveness and robustness of the proposed algorithm.</description><identifier>ISSN: 0278-081X</identifier><identifier>EISSN: 1531-5878</identifier><identifier>DOI: 10.1007/s00034-024-02742-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptive algorithms ; Adaptive sampling ; Algorithms ; Beamforming ; Circuits and Systems ; Covariance matrix ; Effectiveness ; Electrical Engineering ; Electronics and Microelectronics ; Engineering ; Gaussian beams (optics) ; Instrumentation ; Quadratic programming ; Robustness ; Sample size ; Short Paper ; Signal processing ; Signal,Image and Speech Processing ; Steering ; Vectors (mathematics)</subject><ispartof>Circuits, systems, and signal processing, 2024-09, Vol.43 (9), p.6035-6046</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-f7a0e7b4e045f537208d93e0cf15fd10de6ebd21dd722441e21702fcff5242473</cites><orcidid>0000-0001-6639-7256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00034-024-02742-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00034-024-02742-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Jieke</creatorcontrib><creatorcontrib>Zheng, Zhi</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><title>Robust Adaptive Beamforming Based on Covariance Matrix Reconstruction with Gaussian Random Dimensionality Reduction</title><title>Circuits, systems, and signal processing</title><addtitle>Circuits Syst Signal Process</addtitle><description>The performance of adaptive beamforming will deteriorate severely under small sample support, especially when the number of snapshots is smaller than the number of sensors. In this paper, we propose an effective algorithm for robust adaptive beamforming under small sample. Firstly, we utilize standard Guassian random matrices to construct projection matrices for dimension reduction of sample covariance matrix (SCM) and steering vector (SV). Subsequently, the dimensionality-reduced SCM and SV are used to obtain more accurate Capon power spectrum in the case of small sample. By integrating the corresponding Capon power spectrum over the angular sector without desired signal, the interference-plus-noise covariance matrix (INCM) is then reconstructed. Moreover, the SV of desired signal is estimated by solving a quadratic programming problem. Finally, the weight vector of the beamformer is calculated based on the reconstructed INCM and the estimated SV. Simulation results demonstrate the effectiveness and robustness of the proposed algorithm.</description><subject>Adaptive algorithms</subject><subject>Adaptive sampling</subject><subject>Algorithms</subject><subject>Beamforming</subject><subject>Circuits and Systems</subject><subject>Covariance matrix</subject><subject>Effectiveness</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Gaussian beams (optics)</subject><subject>Instrumentation</subject><subject>Quadratic programming</subject><subject>Robustness</subject><subject>Sample size</subject><subject>Short Paper</subject><subject>Signal processing</subject><subject>Signal,Image and Speech Processing</subject><subject>Steering</subject><subject>Vectors (mathematics)</subject><issn>0278-081X</issn><issn>1531-5878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4CngeXWSzTa7x7ZqFRShKHgL6SapKd1NTbK1fXtTV_DmYRiY-b5h-BG6JHBNAPhNAICcZUAPxRnNdkdoQIqcZEXJy2M0SNMyg5K8n6KzEFYApGIVHaAwd4suRDxWchPtVuOJlo1xvrHtEk9k0Aq7Fk_dVnor21rjZxm93eG5rl0bou_qaBPwZeMHnskuhEThuWyVa_CtbXQb0lqubdwnRfX0OToxch30xW8forf7u9fpQ_b0Mnucjp-ymgLEzHAJmi-YBlaYIucUSlXlGmpDCqMIKD3SC0WJUpxSxoimhAM1tTEFZZTxfIiu-rsb7z47HaJYuc6nb4LIoaJVVZFRkSjaU7V3IXhtxMbbRvq9ICAO4Yo-XJHCFT_hil2S8l4KCW6X2v-d_sf6Bp_Nf0Q</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Zhang, Jieke</creator><creator>Zheng, Zhi</creator><creator>Wang, Cheng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6639-7256</orcidid></search><sort><creationdate>20240901</creationdate><title>Robust Adaptive Beamforming Based on Covariance Matrix Reconstruction with Gaussian Random Dimensionality Reduction</title><author>Zhang, Jieke ; Zheng, Zhi ; Wang, Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-f7a0e7b4e045f537208d93e0cf15fd10de6ebd21dd722441e21702fcff5242473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive sampling</topic><topic>Algorithms</topic><topic>Beamforming</topic><topic>Circuits and Systems</topic><topic>Covariance matrix</topic><topic>Effectiveness</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Gaussian beams (optics)</topic><topic>Instrumentation</topic><topic>Quadratic programming</topic><topic>Robustness</topic><topic>Sample size</topic><topic>Short Paper</topic><topic>Signal processing</topic><topic>Signal,Image and Speech Processing</topic><topic>Steering</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jieke</creatorcontrib><creatorcontrib>Zheng, Zhi</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Circuits, systems, and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jieke</au><au>Zheng, Zhi</au><au>Wang, Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Adaptive Beamforming Based on Covariance Matrix Reconstruction with Gaussian Random Dimensionality Reduction</atitle><jtitle>Circuits, systems, and signal processing</jtitle><stitle>Circuits Syst Signal Process</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>43</volume><issue>9</issue><spage>6035</spage><epage>6046</epage><pages>6035-6046</pages><issn>0278-081X</issn><eissn>1531-5878</eissn><abstract>The performance of adaptive beamforming will deteriorate severely under small sample support, especially when the number of snapshots is smaller than the number of sensors. In this paper, we propose an effective algorithm for robust adaptive beamforming under small sample. Firstly, we utilize standard Guassian random matrices to construct projection matrices for dimension reduction of sample covariance matrix (SCM) and steering vector (SV). Subsequently, the dimensionality-reduced SCM and SV are used to obtain more accurate Capon power spectrum in the case of small sample. By integrating the corresponding Capon power spectrum over the angular sector without desired signal, the interference-plus-noise covariance matrix (INCM) is then reconstructed. Moreover, the SV of desired signal is estimated by solving a quadratic programming problem. Finally, the weight vector of the beamformer is calculated based on the reconstructed INCM and the estimated SV. Simulation results demonstrate the effectiveness and robustness of the proposed algorithm.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00034-024-02742-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6639-7256</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-081X |
ispartof | Circuits, systems, and signal processing, 2024-09, Vol.43 (9), p.6035-6046 |
issn | 0278-081X 1531-5878 |
language | eng |
recordid | cdi_proquest_journals_3092999165 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adaptive algorithms Adaptive sampling Algorithms Beamforming Circuits and Systems Covariance matrix Effectiveness Electrical Engineering Electronics and Microelectronics Engineering Gaussian beams (optics) Instrumentation Quadratic programming Robustness Sample size Short Paper Signal processing Signal,Image and Speech Processing Steering Vectors (mathematics) |
title | Robust Adaptive Beamforming Based on Covariance Matrix Reconstruction with Gaussian Random Dimensionality Reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A37%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Adaptive%20Beamforming%20Based%20on%20Covariance%20Matrix%20Reconstruction%20with%20Gaussian%20Random%20Dimensionality%20Reduction&rft.jtitle=Circuits,%20systems,%20and%20signal%20processing&rft.au=Zhang,%20Jieke&rft.date=2024-09-01&rft.volume=43&rft.issue=9&rft.spage=6035&rft.epage=6046&rft.pages=6035-6046&rft.issn=0278-081X&rft.eissn=1531-5878&rft_id=info:doi/10.1007/s00034-024-02742-x&rft_dat=%3Cproquest_cross%3E3092999165%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092999165&rft_id=info:pmid/&rfr_iscdi=true |