Robust Adaptive Beamforming Based on Covariance Matrix Reconstruction with Gaussian Random Dimensionality Reduction

The performance of adaptive beamforming will deteriorate severely under small sample support, especially when the number of snapshots is smaller than the number of sensors. In this paper, we propose an effective algorithm for robust adaptive beamforming under small sample. Firstly, we utilize standa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing systems, and signal processing, 2024-09, Vol.43 (9), p.6035-6046
Hauptverfasser: Zhang, Jieke, Zheng, Zhi, Wang, Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6046
container_issue 9
container_start_page 6035
container_title Circuits, systems, and signal processing
container_volume 43
creator Zhang, Jieke
Zheng, Zhi
Wang, Cheng
description The performance of adaptive beamforming will deteriorate severely under small sample support, especially when the number of snapshots is smaller than the number of sensors. In this paper, we propose an effective algorithm for robust adaptive beamforming under small sample. Firstly, we utilize standard Guassian random matrices to construct projection matrices for dimension reduction of sample covariance matrix (SCM) and steering vector (SV). Subsequently, the dimensionality-reduced SCM and SV are used to obtain more accurate Capon power spectrum in the case of small sample. By integrating the corresponding Capon power spectrum over the angular sector without desired signal, the interference-plus-noise covariance matrix (INCM) is then reconstructed. Moreover, the SV of desired signal is estimated by solving a quadratic programming problem. Finally, the weight vector of the beamformer is calculated based on the reconstructed INCM and the estimated SV. Simulation results demonstrate the effectiveness and robustness of the proposed algorithm.
doi_str_mv 10.1007/s00034-024-02742-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3092999165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092999165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-f7a0e7b4e045f537208d93e0cf15fd10de6ebd21dd722441e21702fcff5242473</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4CngeXWSzTa7x7ZqFRShKHgL6SapKd1NTbK1fXtTV_DmYRiY-b5h-BG6JHBNAPhNAICcZUAPxRnNdkdoQIqcZEXJy2M0SNMyg5K8n6KzEFYApGIVHaAwd4suRDxWchPtVuOJlo1xvrHtEk9k0Aq7Fk_dVnor21rjZxm93eG5rl0bou_qaBPwZeMHnskuhEThuWyVa_CtbXQb0lqubdwnRfX0OToxch30xW8forf7u9fpQ_b0Mnucjp-ymgLEzHAJmi-YBlaYIucUSlXlGmpDCqMIKD3SC0WJUpxSxoimhAM1tTEFZZTxfIiu-rsb7z47HaJYuc6nb4LIoaJVVZFRkSjaU7V3IXhtxMbbRvq9ICAO4Yo-XJHCFT_hil2S8l4KCW6X2v-d_sf6Bp_Nf0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092999165</pqid></control><display><type>article</type><title>Robust Adaptive Beamforming Based on Covariance Matrix Reconstruction with Gaussian Random Dimensionality Reduction</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Jieke ; Zheng, Zhi ; Wang, Cheng</creator><creatorcontrib>Zhang, Jieke ; Zheng, Zhi ; Wang, Cheng</creatorcontrib><description>The performance of adaptive beamforming will deteriorate severely under small sample support, especially when the number of snapshots is smaller than the number of sensors. In this paper, we propose an effective algorithm for robust adaptive beamforming under small sample. Firstly, we utilize standard Guassian random matrices to construct projection matrices for dimension reduction of sample covariance matrix (SCM) and steering vector (SV). Subsequently, the dimensionality-reduced SCM and SV are used to obtain more accurate Capon power spectrum in the case of small sample. By integrating the corresponding Capon power spectrum over the angular sector without desired signal, the interference-plus-noise covariance matrix (INCM) is then reconstructed. Moreover, the SV of desired signal is estimated by solving a quadratic programming problem. Finally, the weight vector of the beamformer is calculated based on the reconstructed INCM and the estimated SV. Simulation results demonstrate the effectiveness and robustness of the proposed algorithm.</description><identifier>ISSN: 0278-081X</identifier><identifier>EISSN: 1531-5878</identifier><identifier>DOI: 10.1007/s00034-024-02742-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptive algorithms ; Adaptive sampling ; Algorithms ; Beamforming ; Circuits and Systems ; Covariance matrix ; Effectiveness ; Electrical Engineering ; Electronics and Microelectronics ; Engineering ; Gaussian beams (optics) ; Instrumentation ; Quadratic programming ; Robustness ; Sample size ; Short Paper ; Signal processing ; Signal,Image and Speech Processing ; Steering ; Vectors (mathematics)</subject><ispartof>Circuits, systems, and signal processing, 2024-09, Vol.43 (9), p.6035-6046</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-f7a0e7b4e045f537208d93e0cf15fd10de6ebd21dd722441e21702fcff5242473</cites><orcidid>0000-0001-6639-7256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00034-024-02742-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00034-024-02742-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Jieke</creatorcontrib><creatorcontrib>Zheng, Zhi</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><title>Robust Adaptive Beamforming Based on Covariance Matrix Reconstruction with Gaussian Random Dimensionality Reduction</title><title>Circuits, systems, and signal processing</title><addtitle>Circuits Syst Signal Process</addtitle><description>The performance of adaptive beamforming will deteriorate severely under small sample support, especially when the number of snapshots is smaller than the number of sensors. In this paper, we propose an effective algorithm for robust adaptive beamforming under small sample. Firstly, we utilize standard Guassian random matrices to construct projection matrices for dimension reduction of sample covariance matrix (SCM) and steering vector (SV). Subsequently, the dimensionality-reduced SCM and SV are used to obtain more accurate Capon power spectrum in the case of small sample. By integrating the corresponding Capon power spectrum over the angular sector without desired signal, the interference-plus-noise covariance matrix (INCM) is then reconstructed. Moreover, the SV of desired signal is estimated by solving a quadratic programming problem. Finally, the weight vector of the beamformer is calculated based on the reconstructed INCM and the estimated SV. Simulation results demonstrate the effectiveness and robustness of the proposed algorithm.</description><subject>Adaptive algorithms</subject><subject>Adaptive sampling</subject><subject>Algorithms</subject><subject>Beamforming</subject><subject>Circuits and Systems</subject><subject>Covariance matrix</subject><subject>Effectiveness</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Gaussian beams (optics)</subject><subject>Instrumentation</subject><subject>Quadratic programming</subject><subject>Robustness</subject><subject>Sample size</subject><subject>Short Paper</subject><subject>Signal processing</subject><subject>Signal,Image and Speech Processing</subject><subject>Steering</subject><subject>Vectors (mathematics)</subject><issn>0278-081X</issn><issn>1531-5878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4CngeXWSzTa7x7ZqFRShKHgL6SapKd1NTbK1fXtTV_DmYRiY-b5h-BG6JHBNAPhNAICcZUAPxRnNdkdoQIqcZEXJy2M0SNMyg5K8n6KzEFYApGIVHaAwd4suRDxWchPtVuOJlo1xvrHtEk9k0Aq7Fk_dVnor21rjZxm93eG5rl0bou_qaBPwZeMHnskuhEThuWyVa_CtbXQb0lqubdwnRfX0OToxch30xW8forf7u9fpQ_b0Mnucjp-ymgLEzHAJmi-YBlaYIucUSlXlGmpDCqMIKD3SC0WJUpxSxoimhAM1tTEFZZTxfIiu-rsb7z47HaJYuc6nb4LIoaJVVZFRkSjaU7V3IXhtxMbbRvq9ICAO4Yo-XJHCFT_hil2S8l4KCW6X2v-d_sf6Bp_Nf0Q</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Zhang, Jieke</creator><creator>Zheng, Zhi</creator><creator>Wang, Cheng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6639-7256</orcidid></search><sort><creationdate>20240901</creationdate><title>Robust Adaptive Beamforming Based on Covariance Matrix Reconstruction with Gaussian Random Dimensionality Reduction</title><author>Zhang, Jieke ; Zheng, Zhi ; Wang, Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-f7a0e7b4e045f537208d93e0cf15fd10de6ebd21dd722441e21702fcff5242473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive sampling</topic><topic>Algorithms</topic><topic>Beamforming</topic><topic>Circuits and Systems</topic><topic>Covariance matrix</topic><topic>Effectiveness</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Gaussian beams (optics)</topic><topic>Instrumentation</topic><topic>Quadratic programming</topic><topic>Robustness</topic><topic>Sample size</topic><topic>Short Paper</topic><topic>Signal processing</topic><topic>Signal,Image and Speech Processing</topic><topic>Steering</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jieke</creatorcontrib><creatorcontrib>Zheng, Zhi</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Circuits, systems, and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jieke</au><au>Zheng, Zhi</au><au>Wang, Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Adaptive Beamforming Based on Covariance Matrix Reconstruction with Gaussian Random Dimensionality Reduction</atitle><jtitle>Circuits, systems, and signal processing</jtitle><stitle>Circuits Syst Signal Process</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>43</volume><issue>9</issue><spage>6035</spage><epage>6046</epage><pages>6035-6046</pages><issn>0278-081X</issn><eissn>1531-5878</eissn><abstract>The performance of adaptive beamforming will deteriorate severely under small sample support, especially when the number of snapshots is smaller than the number of sensors. In this paper, we propose an effective algorithm for robust adaptive beamforming under small sample. Firstly, we utilize standard Guassian random matrices to construct projection matrices for dimension reduction of sample covariance matrix (SCM) and steering vector (SV). Subsequently, the dimensionality-reduced SCM and SV are used to obtain more accurate Capon power spectrum in the case of small sample. By integrating the corresponding Capon power spectrum over the angular sector without desired signal, the interference-plus-noise covariance matrix (INCM) is then reconstructed. Moreover, the SV of desired signal is estimated by solving a quadratic programming problem. Finally, the weight vector of the beamformer is calculated based on the reconstructed INCM and the estimated SV. Simulation results demonstrate the effectiveness and robustness of the proposed algorithm.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00034-024-02742-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6639-7256</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-081X
ispartof Circuits, systems, and signal processing, 2024-09, Vol.43 (9), p.6035-6046
issn 0278-081X
1531-5878
language eng
recordid cdi_proquest_journals_3092999165
source SpringerLink Journals - AutoHoldings
subjects Adaptive algorithms
Adaptive sampling
Algorithms
Beamforming
Circuits and Systems
Covariance matrix
Effectiveness
Electrical Engineering
Electronics and Microelectronics
Engineering
Gaussian beams (optics)
Instrumentation
Quadratic programming
Robustness
Sample size
Short Paper
Signal processing
Signal,Image and Speech Processing
Steering
Vectors (mathematics)
title Robust Adaptive Beamforming Based on Covariance Matrix Reconstruction with Gaussian Random Dimensionality Reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A37%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Adaptive%20Beamforming%20Based%20on%20Covariance%20Matrix%20Reconstruction%20with%20Gaussian%20Random%20Dimensionality%20Reduction&rft.jtitle=Circuits,%20systems,%20and%20signal%20processing&rft.au=Zhang,%20Jieke&rft.date=2024-09-01&rft.volume=43&rft.issue=9&rft.spage=6035&rft.epage=6046&rft.pages=6035-6046&rft.issn=0278-081X&rft.eissn=1531-5878&rft_id=info:doi/10.1007/s00034-024-02742-x&rft_dat=%3Cproquest_cross%3E3092999165%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092999165&rft_id=info:pmid/&rfr_iscdi=true