EEG-MACS: Manifold Attention and Confidence Stratification for EEG-based Cross-Center Brain Disease Diagnosis under Unreliable Annotations
Cross-center data heterogeneity and annotation unreliability significantly challenge the intelligent diagnosis of diseases using brain signals. A notable example is the EEG-based diagnosis of neurodegenerative diseases, which features subtler abnormal neural dynamics typically observed in small-grou...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Song, Zhenxi Qin, Ruihan Ren, Huixia Liang, Zhen Guo, Yi Zhang, Min Zhang, Zhiguo |
description | Cross-center data heterogeneity and annotation unreliability significantly challenge the intelligent diagnosis of diseases using brain signals. A notable example is the EEG-based diagnosis of neurodegenerative diseases, which features subtler abnormal neural dynamics typically observed in small-group settings. To advance this area, in this work, we introduce a transferable framework employing Manifold Attention and Confidence Stratification (MACS) to diagnose neurodegenerative disorders based on EEG signals sourced from four centers with unreliable annotations. The MACS framework's effectiveness stems from these features: 1) The Augmentor generates various EEG-represented brain variants to enrich the data space; 2) The Switcher enhances the feature space for trusted samples and reduces overfitting on incorrectly labeled samples; 3) The Encoder uses the Riemannian manifold and Euclidean metrics to capture spatiotemporal variations and dynamic synchronization in EEG; 4) The Projector, equipped with dual heads, monitors consistency across multiple brain variants and ensures diagnostic accuracy; 5) The Stratifier adaptively stratifies learned samples by confidence levels throughout the training process; 6) Forward and backpropagation in MACS are constrained by confidence stratification to stabilize the learning system amid unreliable annotations. Our subject-independent experiments, conducted on both neurocognitive and movement disorders using cross-center corpora, have demonstrated superior performance compared to existing related algorithms. This work not only improves EEG-based diagnostics for cross-center and small-setting brain diseases but also offers insights into extending MACS techniques to other data analyses, tackling data heterogeneity and annotation unreliability in multimedia and multimodal content understanding. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3092967901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092967901</sourcerecordid><originalsourceid>FETCH-proquest_journals_30929679013</originalsourceid><addsrcrecordid>eNqNjE1OwzAQRq1KSK2gdxiJdSTXpj9hF0KATVel62rajCtX0UzxOJfg1JiKA7B6i_e9b2JmzvtFtXlybmrmqhdrrVut3XLpZ-a7696rbdPunmGLHIMMPTQ5E-coDMg9tMIh9sQngl1OmGOIJ7zZIAl-8yMqlV0S1aotJSV4SRgZXqNScYV4ZtGoMHJf7J4TDRGPA0HDLPl2pw_mLuCgNP_jvXl86z7bj-qa5GskzYeLjImLOnhbu3q1ru3C_2_1A2pXUyI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092967901</pqid></control><display><type>article</type><title>EEG-MACS: Manifold Attention and Confidence Stratification for EEG-based Cross-Center Brain Disease Diagnosis under Unreliable Annotations</title><source>Free E- Journals</source><creator>Song, Zhenxi ; Qin, Ruihan ; Ren, Huixia ; Liang, Zhen ; Guo, Yi ; Zhang, Min ; Zhang, Zhiguo</creator><creatorcontrib>Song, Zhenxi ; Qin, Ruihan ; Ren, Huixia ; Liang, Zhen ; Guo, Yi ; Zhang, Min ; Zhang, Zhiguo</creatorcontrib><description>Cross-center data heterogeneity and annotation unreliability significantly challenge the intelligent diagnosis of diseases using brain signals. A notable example is the EEG-based diagnosis of neurodegenerative diseases, which features subtler abnormal neural dynamics typically observed in small-group settings. To advance this area, in this work, we introduce a transferable framework employing Manifold Attention and Confidence Stratification (MACS) to diagnose neurodegenerative disorders based on EEG signals sourced from four centers with unreliable annotations. The MACS framework's effectiveness stems from these features: 1) The Augmentor generates various EEG-represented brain variants to enrich the data space; 2) The Switcher enhances the feature space for trusted samples and reduces overfitting on incorrectly labeled samples; 3) The Encoder uses the Riemannian manifold and Euclidean metrics to capture spatiotemporal variations and dynamic synchronization in EEG; 4) The Projector, equipped with dual heads, monitors consistency across multiple brain variants and ensures diagnostic accuracy; 5) The Stratifier adaptively stratifies learned samples by confidence levels throughout the training process; 6) Forward and backpropagation in MACS are constrained by confidence stratification to stabilize the learning system amid unreliable annotations. Our subject-independent experiments, conducted on both neurocognitive and movement disorders using cross-center corpora, have demonstrated superior performance compared to existing related algorithms. This work not only improves EEG-based diagnostics for cross-center and small-setting brain diseases but also offers insights into extending MACS techniques to other data analyses, tackling data heterogeneity and annotation unreliability in multimedia and multimodal content understanding.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Annotations ; Back propagation ; Brain ; Confidence intervals ; Diagnosis ; Electroencephalography ; Euclidean geometry ; Group dynamics ; Heterogeneity ; Multimedia ; Riemann manifold ; Synchronism</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Song, Zhenxi</creatorcontrib><creatorcontrib>Qin, Ruihan</creatorcontrib><creatorcontrib>Ren, Huixia</creatorcontrib><creatorcontrib>Liang, Zhen</creatorcontrib><creatorcontrib>Guo, Yi</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Zhang, Zhiguo</creatorcontrib><title>EEG-MACS: Manifold Attention and Confidence Stratification for EEG-based Cross-Center Brain Disease Diagnosis under Unreliable Annotations</title><title>arXiv.org</title><description>Cross-center data heterogeneity and annotation unreliability significantly challenge the intelligent diagnosis of diseases using brain signals. A notable example is the EEG-based diagnosis of neurodegenerative diseases, which features subtler abnormal neural dynamics typically observed in small-group settings. To advance this area, in this work, we introduce a transferable framework employing Manifold Attention and Confidence Stratification (MACS) to diagnose neurodegenerative disorders based on EEG signals sourced from four centers with unreliable annotations. The MACS framework's effectiveness stems from these features: 1) The Augmentor generates various EEG-represented brain variants to enrich the data space; 2) The Switcher enhances the feature space for trusted samples and reduces overfitting on incorrectly labeled samples; 3) The Encoder uses the Riemannian manifold and Euclidean metrics to capture spatiotemporal variations and dynamic synchronization in EEG; 4) The Projector, equipped with dual heads, monitors consistency across multiple brain variants and ensures diagnostic accuracy; 5) The Stratifier adaptively stratifies learned samples by confidence levels throughout the training process; 6) Forward and backpropagation in MACS are constrained by confidence stratification to stabilize the learning system amid unreliable annotations. Our subject-independent experiments, conducted on both neurocognitive and movement disorders using cross-center corpora, have demonstrated superior performance compared to existing related algorithms. This work not only improves EEG-based diagnostics for cross-center and small-setting brain diseases but also offers insights into extending MACS techniques to other data analyses, tackling data heterogeneity and annotation unreliability in multimedia and multimodal content understanding.</description><subject>Algorithms</subject><subject>Annotations</subject><subject>Back propagation</subject><subject>Brain</subject><subject>Confidence intervals</subject><subject>Diagnosis</subject><subject>Electroencephalography</subject><subject>Euclidean geometry</subject><subject>Group dynamics</subject><subject>Heterogeneity</subject><subject>Multimedia</subject><subject>Riemann manifold</subject><subject>Synchronism</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjE1OwzAQRq1KSK2gdxiJdSTXpj9hF0KATVel62rajCtX0UzxOJfg1JiKA7B6i_e9b2JmzvtFtXlybmrmqhdrrVut3XLpZ-a7696rbdPunmGLHIMMPTQ5E-coDMg9tMIh9sQngl1OmGOIJ7zZIAl-8yMqlV0S1aotJSV4SRgZXqNScYV4ZtGoMHJf7J4TDRGPA0HDLPl2pw_mLuCgNP_jvXl86z7bj-qa5GskzYeLjImLOnhbu3q1ru3C_2_1A2pXUyI</recordid><startdate>20240813</startdate><enddate>20240813</enddate><creator>Song, Zhenxi</creator><creator>Qin, Ruihan</creator><creator>Ren, Huixia</creator><creator>Liang, Zhen</creator><creator>Guo, Yi</creator><creator>Zhang, Min</creator><creator>Zhang, Zhiguo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240813</creationdate><title>EEG-MACS: Manifold Attention and Confidence Stratification for EEG-based Cross-Center Brain Disease Diagnosis under Unreliable Annotations</title><author>Song, Zhenxi ; Qin, Ruihan ; Ren, Huixia ; Liang, Zhen ; Guo, Yi ; Zhang, Min ; Zhang, Zhiguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30929679013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Annotations</topic><topic>Back propagation</topic><topic>Brain</topic><topic>Confidence intervals</topic><topic>Diagnosis</topic><topic>Electroencephalography</topic><topic>Euclidean geometry</topic><topic>Group dynamics</topic><topic>Heterogeneity</topic><topic>Multimedia</topic><topic>Riemann manifold</topic><topic>Synchronism</topic><toplevel>online_resources</toplevel><creatorcontrib>Song, Zhenxi</creatorcontrib><creatorcontrib>Qin, Ruihan</creatorcontrib><creatorcontrib>Ren, Huixia</creatorcontrib><creatorcontrib>Liang, Zhen</creatorcontrib><creatorcontrib>Guo, Yi</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Zhang, Zhiguo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Zhenxi</au><au>Qin, Ruihan</au><au>Ren, Huixia</au><au>Liang, Zhen</au><au>Guo, Yi</au><au>Zhang, Min</au><au>Zhang, Zhiguo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>EEG-MACS: Manifold Attention and Confidence Stratification for EEG-based Cross-Center Brain Disease Diagnosis under Unreliable Annotations</atitle><jtitle>arXiv.org</jtitle><date>2024-08-13</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Cross-center data heterogeneity and annotation unreliability significantly challenge the intelligent diagnosis of diseases using brain signals. A notable example is the EEG-based diagnosis of neurodegenerative diseases, which features subtler abnormal neural dynamics typically observed in small-group settings. To advance this area, in this work, we introduce a transferable framework employing Manifold Attention and Confidence Stratification (MACS) to diagnose neurodegenerative disorders based on EEG signals sourced from four centers with unreliable annotations. The MACS framework's effectiveness stems from these features: 1) The Augmentor generates various EEG-represented brain variants to enrich the data space; 2) The Switcher enhances the feature space for trusted samples and reduces overfitting on incorrectly labeled samples; 3) The Encoder uses the Riemannian manifold and Euclidean metrics to capture spatiotemporal variations and dynamic synchronization in EEG; 4) The Projector, equipped with dual heads, monitors consistency across multiple brain variants and ensures diagnostic accuracy; 5) The Stratifier adaptively stratifies learned samples by confidence levels throughout the training process; 6) Forward and backpropagation in MACS are constrained by confidence stratification to stabilize the learning system amid unreliable annotations. Our subject-independent experiments, conducted on both neurocognitive and movement disorders using cross-center corpora, have demonstrated superior performance compared to existing related algorithms. This work not only improves EEG-based diagnostics for cross-center and small-setting brain diseases but also offers insights into extending MACS techniques to other data analyses, tackling data heterogeneity and annotation unreliability in multimedia and multimodal content understanding.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3092967901 |
source | Free E- Journals |
subjects | Algorithms Annotations Back propagation Brain Confidence intervals Diagnosis Electroencephalography Euclidean geometry Group dynamics Heterogeneity Multimedia Riemann manifold Synchronism |
title | EEG-MACS: Manifold Attention and Confidence Stratification for EEG-based Cross-Center Brain Disease Diagnosis under Unreliable Annotations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A51%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=EEG-MACS:%20Manifold%20Attention%20and%20Confidence%20Stratification%20for%20EEG-based%20Cross-Center%20Brain%20Disease%20Diagnosis%20under%20Unreliable%20Annotations&rft.jtitle=arXiv.org&rft.au=Song,%20Zhenxi&rft.date=2024-08-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3092967901%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092967901&rft_id=info:pmid/&rfr_iscdi=true |