Retrieval-Augmented Hierarchical in-Context Reinforcement Learning and Hindsight Modular Reflections for Task Planning with LLMs
Large Language Models (LLMs) have demonstrated remarkable abilities in various language tasks, making them promising candidates for decision-making in robotics. Inspired by Hierarchical Reinforcement Learning (HRL), we propose Retrieval-Augmented in-context reinforcement Learning (RAHL), a novel fra...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sun, Chuanneng Huang, Songjun Pompili, Dario |
description | Large Language Models (LLMs) have demonstrated remarkable abilities in various language tasks, making them promising candidates for decision-making in robotics. Inspired by Hierarchical Reinforcement Learning (HRL), we propose Retrieval-Augmented in-context reinforcement Learning (RAHL), a novel framework that decomposes complex tasks into sub-tasks using an LLM-based high-level policy, in which a complex task is decomposed into sub-tasks by a high-level policy on-the-fly. The sub-tasks, defined by goals, are assigned to the low-level policy to complete. To improve the agent's performance in multi-episode execution, we propose Hindsight Modular Reflection (HMR), where, instead of reflecting on the full trajectory, we let the agent reflect on shorter sub-trajectories to improve reflection efficiency. We evaluated the decision-making ability of the proposed RAHL in three benchmark environments--ALFWorld, Webshop, and HotpotQA. The results show that RAHL can achieve an improvement in performance in 9%, 42%, and 10% in 5 episodes of execution in strong baselines. Furthermore, we also implemented RAHL on the Boston Dynamics SPOT robot. The experiment shows that the robot can scan the environment, find entrances, and navigate to new rooms controlled by the LLM policy. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3092950429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092950429</sourcerecordid><originalsourceid>FETCH-proquest_journals_30929504293</originalsourceid><addsrcrecordid>eNqNi8FqwkAURQehUGn9hwddB6Yzpm2WIoqLCEXcyyN5SZ4d3-jMxHbppxuLH-DqwrnnjNTYWPuefU2NeVaTGPdaa_PxafLcjtVlQykwndFls749kCSqYcUUMFQdV-iAJZv7Af8l2BBL40NFNw9KwiAsLaDcEqkjt12Cta97h2GQG0dVYi8Rhgi2GH_g26H8N7-cOijLdXxVTw26SJP7vqi35WI7X2XH4E89xbTb-z7IcO2sLkyR66kp7GPWFV9uUOU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092950429</pqid></control><display><type>article</type><title>Retrieval-Augmented Hierarchical in-Context Reinforcement Learning and Hindsight Modular Reflections for Task Planning with LLMs</title><source>Free E- Journals</source><creator>Sun, Chuanneng ; Huang, Songjun ; Pompili, Dario</creator><creatorcontrib>Sun, Chuanneng ; Huang, Songjun ; Pompili, Dario</creatorcontrib><description>Large Language Models (LLMs) have demonstrated remarkable abilities in various language tasks, making them promising candidates for decision-making in robotics. Inspired by Hierarchical Reinforcement Learning (HRL), we propose Retrieval-Augmented in-context reinforcement Learning (RAHL), a novel framework that decomposes complex tasks into sub-tasks using an LLM-based high-level policy, in which a complex task is decomposed into sub-tasks by a high-level policy on-the-fly. The sub-tasks, defined by goals, are assigned to the low-level policy to complete. To improve the agent's performance in multi-episode execution, we propose Hindsight Modular Reflection (HMR), where, instead of reflecting on the full trajectory, we let the agent reflect on shorter sub-trajectories to improve reflection efficiency. We evaluated the decision-making ability of the proposed RAHL in three benchmark environments--ALFWorld, Webshop, and HotpotQA. The results show that RAHL can achieve an improvement in performance in 9%, 42%, and 10% in 5 episodes of execution in strong baselines. Furthermore, we also implemented RAHL on the Boston Dynamics SPOT robot. The experiment shows that the robot can scan the environment, find entrances, and navigate to new rooms controlled by the LLM policy.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Context ; Decision making ; Decomposition ; Large language models ; Robotics ; Task complexity ; Trajectory analysis</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Sun, Chuanneng</creatorcontrib><creatorcontrib>Huang, Songjun</creatorcontrib><creatorcontrib>Pompili, Dario</creatorcontrib><title>Retrieval-Augmented Hierarchical in-Context Reinforcement Learning and Hindsight Modular Reflections for Task Planning with LLMs</title><title>arXiv.org</title><description>Large Language Models (LLMs) have demonstrated remarkable abilities in various language tasks, making them promising candidates for decision-making in robotics. Inspired by Hierarchical Reinforcement Learning (HRL), we propose Retrieval-Augmented in-context reinforcement Learning (RAHL), a novel framework that decomposes complex tasks into sub-tasks using an LLM-based high-level policy, in which a complex task is decomposed into sub-tasks by a high-level policy on-the-fly. The sub-tasks, defined by goals, are assigned to the low-level policy to complete. To improve the agent's performance in multi-episode execution, we propose Hindsight Modular Reflection (HMR), where, instead of reflecting on the full trajectory, we let the agent reflect on shorter sub-trajectories to improve reflection efficiency. We evaluated the decision-making ability of the proposed RAHL in three benchmark environments--ALFWorld, Webshop, and HotpotQA. The results show that RAHL can achieve an improvement in performance in 9%, 42%, and 10% in 5 episodes of execution in strong baselines. Furthermore, we also implemented RAHL on the Boston Dynamics SPOT robot. The experiment shows that the robot can scan the environment, find entrances, and navigate to new rooms controlled by the LLM policy.</description><subject>Context</subject><subject>Decision making</subject><subject>Decomposition</subject><subject>Large language models</subject><subject>Robotics</subject><subject>Task complexity</subject><subject>Trajectory analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi8FqwkAURQehUGn9hwddB6Yzpm2WIoqLCEXcyyN5SZ4d3-jMxHbppxuLH-DqwrnnjNTYWPuefU2NeVaTGPdaa_PxafLcjtVlQykwndFls749kCSqYcUUMFQdV-iAJZv7Af8l2BBL40NFNw9KwiAsLaDcEqkjt12Cta97h2GQG0dVYi8Rhgi2GH_g26H8N7-cOijLdXxVTw26SJP7vqi35WI7X2XH4E89xbTb-z7IcO2sLkyR66kp7GPWFV9uUOU</recordid><startdate>20241004</startdate><enddate>20241004</enddate><creator>Sun, Chuanneng</creator><creator>Huang, Songjun</creator><creator>Pompili, Dario</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241004</creationdate><title>Retrieval-Augmented Hierarchical in-Context Reinforcement Learning and Hindsight Modular Reflections for Task Planning with LLMs</title><author>Sun, Chuanneng ; Huang, Songjun ; Pompili, Dario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30929504293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Context</topic><topic>Decision making</topic><topic>Decomposition</topic><topic>Large language models</topic><topic>Robotics</topic><topic>Task complexity</topic><topic>Trajectory analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Sun, Chuanneng</creatorcontrib><creatorcontrib>Huang, Songjun</creatorcontrib><creatorcontrib>Pompili, Dario</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Chuanneng</au><au>Huang, Songjun</au><au>Pompili, Dario</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Retrieval-Augmented Hierarchical in-Context Reinforcement Learning and Hindsight Modular Reflections for Task Planning with LLMs</atitle><jtitle>arXiv.org</jtitle><date>2024-10-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Large Language Models (LLMs) have demonstrated remarkable abilities in various language tasks, making them promising candidates for decision-making in robotics. Inspired by Hierarchical Reinforcement Learning (HRL), we propose Retrieval-Augmented in-context reinforcement Learning (RAHL), a novel framework that decomposes complex tasks into sub-tasks using an LLM-based high-level policy, in which a complex task is decomposed into sub-tasks by a high-level policy on-the-fly. The sub-tasks, defined by goals, are assigned to the low-level policy to complete. To improve the agent's performance in multi-episode execution, we propose Hindsight Modular Reflection (HMR), where, instead of reflecting on the full trajectory, we let the agent reflect on shorter sub-trajectories to improve reflection efficiency. We evaluated the decision-making ability of the proposed RAHL in three benchmark environments--ALFWorld, Webshop, and HotpotQA. The results show that RAHL can achieve an improvement in performance in 9%, 42%, and 10% in 5 episodes of execution in strong baselines. Furthermore, we also implemented RAHL on the Boston Dynamics SPOT robot. The experiment shows that the robot can scan the environment, find entrances, and navigate to new rooms controlled by the LLM policy.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3092950429 |
source | Free E- Journals |
subjects | Context Decision making Decomposition Large language models Robotics Task complexity Trajectory analysis |
title | Retrieval-Augmented Hierarchical in-Context Reinforcement Learning and Hindsight Modular Reflections for Task Planning with LLMs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Retrieval-Augmented%20Hierarchical%20in-Context%20Reinforcement%20Learning%20and%20Hindsight%20Modular%20Reflections%20for%20Task%20Planning%20with%20LLMs&rft.jtitle=arXiv.org&rft.au=Sun,%20Chuanneng&rft.date=2024-10-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3092950429%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092950429&rft_id=info:pmid/&rfr_iscdi=true |