Tailoring anisotropic synthetic inflow turbulence generator for wind turbine wake simulations
In computational fluid dynamics, defining precise boundary conditions, especially at inlets, is of great importance. Inlet flows typically exhibit natural turbulence, which is managed in various ways in scale-resolving simulations. Methods to establish turbulent inlet conditions are commonly created...
Gespeichert in:
Veröffentlicht in: | Journal of renewable and sustainable energy 2024-07, Vol.16 (4) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Journal of renewable and sustainable energy |
container_volume | 16 |
creator | Ali, Naseem Gatti, Davide Kornev, Nikolai |
description | In computational fluid dynamics, defining precise boundary conditions, especially at inlets, is of great importance. Inlet flows typically exhibit natural turbulence, which is managed in various ways in scale-resolving simulations. Methods to establish turbulent inlet conditions are commonly created using natural transition, uncorrelated oscillations, periodic boundary conditions from auxiliary simulations, or synthetic turbulent fields. In this study, we explore a technique aimed at generating a divergence-free synthetic inflow turbulence with arbitrary anisotropy. The methodology is based on the conventional portrayal of turbulence as consisting of several coherent structures. While our approach adeptly emulates predefined statistical characteristics across different scales, its primary focus is on generating input parameters that impact the airflow within the wake of individual wind turbines and the atmospheric boundary layer within a wind farm. The results are compared with high-resolution velocity experimental measurements, large eddy simulations, and the digital filter-based inlet boundary condition already available in OpenFOAM. The findings demonstrate that the applied inflow generator outperforms the default OpenFOAM filter, particularly in the context of a single wind turbine. |
doi_str_mv | 10.1063/5.0217802 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3092930982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092930982</sourcerecordid><originalsourceid>FETCH-LOGICAL-p148t-e9640b534f910c429d2fc1ff9d29d9cd365f3da757c19a04b62eee08931368e83</originalsourceid><addsrcrecordid>eNotUE1LAzEUDIJgrR78BwFvwtaXZL9ylOIXFLzUo4Ts7ktN3SZrkqX037u2PbyZB294MwwhdwwWDErxWCyAs6oGfkFmTOYsq4DxK3Id4xag5FDwGflaa9v7YN2GamejT8EPtqXx4NI3pmmzzvR-T9MYmrFH1yLdoMOgkw_UTLO3rjterUO61z9Io92NvU7Wu3hDLo3uI96eeU4-X57Xy7ds9fH6vnxaZQPL65ShLHNoCpEbyaDNuey4aZkxE8tOtp0oCyM6XRVVy6SGvCk5IkItBRNljbWYk_vT3yH43xFjUls_BjdZKgGSywlqPqkeTqrY2nQMqIZgdzocFAP1X5kq1Lky8Qfb9GFz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092930982</pqid></control><display><type>article</type><title>Tailoring anisotropic synthetic inflow turbulence generator for wind turbine wake simulations</title><source>American Institute of Physics (AIP) Journals</source><creator>Ali, Naseem ; Gatti, Davide ; Kornev, Nikolai</creator><creatorcontrib>Ali, Naseem ; Gatti, Davide ; Kornev, Nikolai</creatorcontrib><description>In computational fluid dynamics, defining precise boundary conditions, especially at inlets, is of great importance. Inlet flows typically exhibit natural turbulence, which is managed in various ways in scale-resolving simulations. Methods to establish turbulent inlet conditions are commonly created using natural transition, uncorrelated oscillations, periodic boundary conditions from auxiliary simulations, or synthetic turbulent fields. In this study, we explore a technique aimed at generating a divergence-free synthetic inflow turbulence with arbitrary anisotropy. The methodology is based on the conventional portrayal of turbulence as consisting of several coherent structures. While our approach adeptly emulates predefined statistical characteristics across different scales, its primary focus is on generating input parameters that impact the airflow within the wake of individual wind turbines and the atmospheric boundary layer within a wind farm. The results are compared with high-resolution velocity experimental measurements, large eddy simulations, and the digital filter-based inlet boundary condition already available in OpenFOAM. The findings demonstrate that the applied inflow generator outperforms the default OpenFOAM filter, particularly in the context of a single wind turbine.</description><identifier>EISSN: 1941-7012</identifier><identifier>DOI: 10.1063/5.0217802</identifier><identifier>CODEN: JRSEBH</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Air flow ; Anisotropy ; Atmospheric boundary layer ; Boundary conditions ; Boundary layer transition ; Computational fluid dynamics ; Digital filters ; Fluid flow ; Inflow ; Inlet flow ; Inlets ; Large eddy simulation ; Simulation ; Turbulence ; Wind power ; Wind turbines</subject><ispartof>Journal of renewable and sustainable energy, 2024-07, Vol.16 (4)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9953-8713 ; 0000-0002-8178-9626 ; 0000-0002-8560-4406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jrse/article-lookup/doi/10.1063/5.0217802$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Ali, Naseem</creatorcontrib><creatorcontrib>Gatti, Davide</creatorcontrib><creatorcontrib>Kornev, Nikolai</creatorcontrib><title>Tailoring anisotropic synthetic inflow turbulence generator for wind turbine wake simulations</title><title>Journal of renewable and sustainable energy</title><description>In computational fluid dynamics, defining precise boundary conditions, especially at inlets, is of great importance. Inlet flows typically exhibit natural turbulence, which is managed in various ways in scale-resolving simulations. Methods to establish turbulent inlet conditions are commonly created using natural transition, uncorrelated oscillations, periodic boundary conditions from auxiliary simulations, or synthetic turbulent fields. In this study, we explore a technique aimed at generating a divergence-free synthetic inflow turbulence with arbitrary anisotropy. The methodology is based on the conventional portrayal of turbulence as consisting of several coherent structures. While our approach adeptly emulates predefined statistical characteristics across different scales, its primary focus is on generating input parameters that impact the airflow within the wake of individual wind turbines and the atmospheric boundary layer within a wind farm. The results are compared with high-resolution velocity experimental measurements, large eddy simulations, and the digital filter-based inlet boundary condition already available in OpenFOAM. The findings demonstrate that the applied inflow generator outperforms the default OpenFOAM filter, particularly in the context of a single wind turbine.</description><subject>Air flow</subject><subject>Anisotropy</subject><subject>Atmospheric boundary layer</subject><subject>Boundary conditions</subject><subject>Boundary layer transition</subject><subject>Computational fluid dynamics</subject><subject>Digital filters</subject><subject>Fluid flow</subject><subject>Inflow</subject><subject>Inlet flow</subject><subject>Inlets</subject><subject>Large eddy simulation</subject><subject>Simulation</subject><subject>Turbulence</subject><subject>Wind power</subject><subject>Wind turbines</subject><issn>1941-7012</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotUE1LAzEUDIJgrR78BwFvwtaXZL9ylOIXFLzUo4Ts7ktN3SZrkqX037u2PbyZB294MwwhdwwWDErxWCyAs6oGfkFmTOYsq4DxK3Id4xag5FDwGflaa9v7YN2GamejT8EPtqXx4NI3pmmzzvR-T9MYmrFH1yLdoMOgkw_UTLO3rjterUO61z9Io92NvU7Wu3hDLo3uI96eeU4-X57Xy7ds9fH6vnxaZQPL65ShLHNoCpEbyaDNuey4aZkxE8tOtp0oCyM6XRVVy6SGvCk5IkItBRNljbWYk_vT3yH43xFjUls_BjdZKgGSywlqPqkeTqrY2nQMqIZgdzocFAP1X5kq1Lky8Qfb9GFz</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Ali, Naseem</creator><creator>Gatti, Davide</creator><creator>Kornev, Nikolai</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9953-8713</orcidid><orcidid>https://orcid.org/0000-0002-8178-9626</orcidid><orcidid>https://orcid.org/0000-0002-8560-4406</orcidid></search><sort><creationdate>202407</creationdate><title>Tailoring anisotropic synthetic inflow turbulence generator for wind turbine wake simulations</title><author>Ali, Naseem ; Gatti, Davide ; Kornev, Nikolai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p148t-e9640b534f910c429d2fc1ff9d29d9cd365f3da757c19a04b62eee08931368e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air flow</topic><topic>Anisotropy</topic><topic>Atmospheric boundary layer</topic><topic>Boundary conditions</topic><topic>Boundary layer transition</topic><topic>Computational fluid dynamics</topic><topic>Digital filters</topic><topic>Fluid flow</topic><topic>Inflow</topic><topic>Inlet flow</topic><topic>Inlets</topic><topic>Large eddy simulation</topic><topic>Simulation</topic><topic>Turbulence</topic><topic>Wind power</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Naseem</creatorcontrib><creatorcontrib>Gatti, Davide</creatorcontrib><creatorcontrib>Kornev, Nikolai</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of renewable and sustainable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Naseem</au><au>Gatti, Davide</au><au>Kornev, Nikolai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring anisotropic synthetic inflow turbulence generator for wind turbine wake simulations</atitle><jtitle>Journal of renewable and sustainable energy</jtitle><date>2024-07</date><risdate>2024</risdate><volume>16</volume><issue>4</issue><eissn>1941-7012</eissn><coden>JRSEBH</coden><abstract>In computational fluid dynamics, defining precise boundary conditions, especially at inlets, is of great importance. Inlet flows typically exhibit natural turbulence, which is managed in various ways in scale-resolving simulations. Methods to establish turbulent inlet conditions are commonly created using natural transition, uncorrelated oscillations, periodic boundary conditions from auxiliary simulations, or synthetic turbulent fields. In this study, we explore a technique aimed at generating a divergence-free synthetic inflow turbulence with arbitrary anisotropy. The methodology is based on the conventional portrayal of turbulence as consisting of several coherent structures. While our approach adeptly emulates predefined statistical characteristics across different scales, its primary focus is on generating input parameters that impact the airflow within the wake of individual wind turbines and the atmospheric boundary layer within a wind farm. The results are compared with high-resolution velocity experimental measurements, large eddy simulations, and the digital filter-based inlet boundary condition already available in OpenFOAM. The findings demonstrate that the applied inflow generator outperforms the default OpenFOAM filter, particularly in the context of a single wind turbine.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0217802</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9953-8713</orcidid><orcidid>https://orcid.org/0000-0002-8178-9626</orcidid><orcidid>https://orcid.org/0000-0002-8560-4406</orcidid></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1941-7012 |
ispartof | Journal of renewable and sustainable energy, 2024-07, Vol.16 (4) |
issn | 1941-7012 |
language | eng |
recordid | cdi_proquest_journals_3092930982 |
source | American Institute of Physics (AIP) Journals |
subjects | Air flow Anisotropy Atmospheric boundary layer Boundary conditions Boundary layer transition Computational fluid dynamics Digital filters Fluid flow Inflow Inlet flow Inlets Large eddy simulation Simulation Turbulence Wind power Wind turbines |
title | Tailoring anisotropic synthetic inflow turbulence generator for wind turbine wake simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A57%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20anisotropic%20synthetic%20inflow%20turbulence%20generator%20for%20wind%20turbine%20wake%20simulations&rft.jtitle=Journal%20of%20renewable%20and%20sustainable%20energy&rft.au=Ali,%20Naseem&rft.date=2024-07&rft.volume=16&rft.issue=4&rft.eissn=1941-7012&rft.coden=JRSEBH&rft_id=info:doi/10.1063/5.0217802&rft_dat=%3Cproquest_scita%3E3092930982%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092930982&rft_id=info:pmid/&rfr_iscdi=true |