Spectral phase pulse shaping reduces ground state depletion in high-order harmonic generation

High-order harmonic generation (HHG) has become an indispensable process for generating attosecond pulse trains and single attosecond pulses used in the observation of nuclear and electronic motion. As such, improved control of the HHG process is desirable, and one such possibility for this control...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. D, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2024-08, Vol.78 (8), Article 103
Hauptverfasser: Aygun, J., Buitrago, C. G., Ciappina, M. F., Harris, A. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title The European physical journal. D, Atomic, molecular, and optical physics
container_volume 78
creator Aygun, J.
Buitrago, C. G.
Ciappina, M. F.
Harris, A. L.
description High-order harmonic generation (HHG) has become an indispensable process for generating attosecond pulse trains and single attosecond pulses used in the observation of nuclear and electronic motion. As such, improved control of the HHG process is desirable, and one such possibility for this control is through the use of structured laser pulses. We present numerical results from solving the one-dimensional time-dependent Schrödinger equation for HHG from hydrogen using Airy and Gaussian pulses that differ only in their spectral phase. Airy pulses have identical power spectra to Gaussian pulses, but different spectral phases and temporal envelopes. We show that the use of Airy pulses results in less ground state depletion compared to the Gaussian pulse, while maintaining harmonic yield and cutoff. Our results demonstrate that Airy pulses with higher intensity can produce similar HHG spectra to lower intensity Gaussian pulses without depleting the ground state. The different temporal envelopes of the Gaussian and Airy pulses lead to changes in the dynamics of the HHG process, altering the time-dependence of the ground state population and the emission times of the high harmonics. Graphical abstract High-order harmonic generation (HHG) using an Airy pulse with a third order spectral phase results in less ground state depletion, but similar harmonic yield, compared to a Gaussian pulse. Top – schematic depiction of the 3-step HHG process for different intensity pulses. Bottom left – time-dependent ground state populations for Gaussian pulses showing that a more intense pulse causes more ground state depletion. Bottom middle – final ground state populations for Airy and Gaussian pulses as a function of intensity showing that Airy pulses result in less ground state depletion for a given intensity. Bottom right – HHG spectra for a more intense Airy pulse and a less intense Gaussian pulse exhibit similar shapes, magnitudes, and plateau cutoff values
doi_str_mv 10.1140/epjd/s10053-024-00890-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3092847989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092847989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c210t-faa083ede9f8c5e0a460d0bdb6d4ec3c40194e21ddfad5c43a231a6c402628d93</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWKvPYMB17MllpjNLKd6g4EJdSkiTM5fSZmIys-jbO2NFl25ODuH__gMfIdccbjlXsMCwdYvEATLJQCgGUJTADidkxpVULIdlefq753BOLlLaAoDIVD4jH68BbR_NjobGJKRh2I0zNSa0vqYR3WAx0Tp2g3c09aZH6jDssG87T1tPm7ZuWBcdRtqYuO98a2mNHqOZEpfkrDJj4dXPOyfvD_dvqye2fnl8Xt2tmRUcelYZA4VEh2VV2AzBqBwcbNwmdwqttAp4qVBw5yrjMqukEZKbfPwXuShcKefk5tgbYvc5YOr1thuiH09qCaUo1LIsptTymLKxSylipUNs9yYeNAc9udSTS310qUeX-tulPoxkcSTTSPga41__f-gXusZ9wA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092847989</pqid></control><display><type>article</type><title>Spectral phase pulse shaping reduces ground state depletion in high-order harmonic generation</title><source>Springer Nature - Complete Springer Journals</source><creator>Aygun, J. ; Buitrago, C. G. ; Ciappina, M. F. ; Harris, A. L.</creator><creatorcontrib>Aygun, J. ; Buitrago, C. G. ; Ciappina, M. F. ; Harris, A. L.</creatorcontrib><description>High-order harmonic generation (HHG) has become an indispensable process for generating attosecond pulse trains and single attosecond pulses used in the observation of nuclear and electronic motion. As such, improved control of the HHG process is desirable, and one such possibility for this control is through the use of structured laser pulses. We present numerical results from solving the one-dimensional time-dependent Schrödinger equation for HHG from hydrogen using Airy and Gaussian pulses that differ only in their spectral phase. Airy pulses have identical power spectra to Gaussian pulses, but different spectral phases and temporal envelopes. We show that the use of Airy pulses results in less ground state depletion compared to the Gaussian pulse, while maintaining harmonic yield and cutoff. Our results demonstrate that Airy pulses with higher intensity can produce similar HHG spectra to lower intensity Gaussian pulses without depleting the ground state. The different temporal envelopes of the Gaussian and Airy pulses lead to changes in the dynamics of the HHG process, altering the time-dependence of the ground state population and the emission times of the high harmonics. Graphical abstract High-order harmonic generation (HHG) using an Airy pulse with a third order spectral phase results in less ground state depletion, but similar harmonic yield, compared to a Gaussian pulse. Top – schematic depiction of the 3-step HHG process for different intensity pulses. Bottom left – time-dependent ground state populations for Gaussian pulses showing that a more intense pulse causes more ground state depletion. Bottom middle – final ground state populations for Airy and Gaussian pulses as a function of intensity showing that Airy pulses result in less ground state depletion for a given intensity. Bottom right – HHG spectra for a more intense Airy pulse and a less intense Gaussian pulse exhibit similar shapes, magnitudes, and plateau cutoff values</description><identifier>ISSN: 1434-6060</identifier><identifier>EISSN: 1434-6079</identifier><identifier>DOI: 10.1140/epjd/s10053-024-00890-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Nonlinear Dynamics and Chaos Theory ; Atomic ; Attosecond pulses ; Depletion ; Emission spectra ; Envelopes ; Gaussian process ; Ground state ; Harmonic generations ; Molecular ; Optical and Plasma Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Power spectra ; Quantum Information Technology ; Quantum Physics ; Regular Article - Ultraintense and Ultrashort Laser Fields ; Schrodinger equation ; Spectroscopy/Spectrometry ; Spintronics ; Time dependence</subject><ispartof>The European physical journal. D, Atomic, molecular, and optical physics, 2024-08, Vol.78 (8), Article 103</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c210t-faa083ede9f8c5e0a460d0bdb6d4ec3c40194e21ddfad5c43a231a6c402628d93</cites><orcidid>0000-0003-2689-982X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjd/s10053-024-00890-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjd/s10053-024-00890-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Aygun, J.</creatorcontrib><creatorcontrib>Buitrago, C. G.</creatorcontrib><creatorcontrib>Ciappina, M. F.</creatorcontrib><creatorcontrib>Harris, A. L.</creatorcontrib><title>Spectral phase pulse shaping reduces ground state depletion in high-order harmonic generation</title><title>The European physical journal. D, Atomic, molecular, and optical physics</title><addtitle>Eur. Phys. J. D</addtitle><description>High-order harmonic generation (HHG) has become an indispensable process for generating attosecond pulse trains and single attosecond pulses used in the observation of nuclear and electronic motion. As such, improved control of the HHG process is desirable, and one such possibility for this control is through the use of structured laser pulses. We present numerical results from solving the one-dimensional time-dependent Schrödinger equation for HHG from hydrogen using Airy and Gaussian pulses that differ only in their spectral phase. Airy pulses have identical power spectra to Gaussian pulses, but different spectral phases and temporal envelopes. We show that the use of Airy pulses results in less ground state depletion compared to the Gaussian pulse, while maintaining harmonic yield and cutoff. Our results demonstrate that Airy pulses with higher intensity can produce similar HHG spectra to lower intensity Gaussian pulses without depleting the ground state. The different temporal envelopes of the Gaussian and Airy pulses lead to changes in the dynamics of the HHG process, altering the time-dependence of the ground state population and the emission times of the high harmonics. Graphical abstract High-order harmonic generation (HHG) using an Airy pulse with a third order spectral phase results in less ground state depletion, but similar harmonic yield, compared to a Gaussian pulse. Top – schematic depiction of the 3-step HHG process for different intensity pulses. Bottom left – time-dependent ground state populations for Gaussian pulses showing that a more intense pulse causes more ground state depletion. Bottom middle – final ground state populations for Airy and Gaussian pulses as a function of intensity showing that Airy pulses result in less ground state depletion for a given intensity. Bottom right – HHG spectra for a more intense Airy pulse and a less intense Gaussian pulse exhibit similar shapes, magnitudes, and plateau cutoff values</description><subject>Applications of Nonlinear Dynamics and Chaos Theory</subject><subject>Atomic</subject><subject>Attosecond pulses</subject><subject>Depletion</subject><subject>Emission spectra</subject><subject>Envelopes</subject><subject>Gaussian process</subject><subject>Ground state</subject><subject>Harmonic generations</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Power spectra</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Regular Article - Ultraintense and Ultrashort Laser Fields</subject><subject>Schrodinger equation</subject><subject>Spectroscopy/Spectrometry</subject><subject>Spintronics</subject><subject>Time dependence</subject><issn>1434-6060</issn><issn>1434-6079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNqFkMtKAzEUhoMoWKvPYMB17MllpjNLKd6g4EJdSkiTM5fSZmIys-jbO2NFl25ODuH__gMfIdccbjlXsMCwdYvEATLJQCgGUJTADidkxpVULIdlefq753BOLlLaAoDIVD4jH68BbR_NjobGJKRh2I0zNSa0vqYR3WAx0Tp2g3c09aZH6jDssG87T1tPm7ZuWBcdRtqYuO98a2mNHqOZEpfkrDJj4dXPOyfvD_dvqye2fnl8Xt2tmRUcelYZA4VEh2VV2AzBqBwcbNwmdwqttAp4qVBw5yrjMqukEZKbfPwXuShcKefk5tgbYvc5YOr1thuiH09qCaUo1LIsptTymLKxSylipUNs9yYeNAc9udSTS310qUeX-tulPoxkcSTTSPga41__f-gXusZ9wA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Aygun, J.</creator><creator>Buitrago, C. G.</creator><creator>Ciappina, M. F.</creator><creator>Harris, A. L.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2689-982X</orcidid></search><sort><creationdate>20240801</creationdate><title>Spectral phase pulse shaping reduces ground state depletion in high-order harmonic generation</title><author>Aygun, J. ; Buitrago, C. G. ; Ciappina, M. F. ; Harris, A. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c210t-faa083ede9f8c5e0a460d0bdb6d4ec3c40194e21ddfad5c43a231a6c402628d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Nonlinear Dynamics and Chaos Theory</topic><topic>Atomic</topic><topic>Attosecond pulses</topic><topic>Depletion</topic><topic>Emission spectra</topic><topic>Envelopes</topic><topic>Gaussian process</topic><topic>Ground state</topic><topic>Harmonic generations</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Power spectra</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Regular Article - Ultraintense and Ultrashort Laser Fields</topic><topic>Schrodinger equation</topic><topic>Spectroscopy/Spectrometry</topic><topic>Spintronics</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aygun, J.</creatorcontrib><creatorcontrib>Buitrago, C. G.</creatorcontrib><creatorcontrib>Ciappina, M. F.</creatorcontrib><creatorcontrib>Harris, A. L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>The European physical journal. D, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aygun, J.</au><au>Buitrago, C. G.</au><au>Ciappina, M. F.</au><au>Harris, A. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral phase pulse shaping reduces ground state depletion in high-order harmonic generation</atitle><jtitle>The European physical journal. D, Atomic, molecular, and optical physics</jtitle><stitle>Eur. Phys. J. D</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>78</volume><issue>8</issue><artnum>103</artnum><issn>1434-6060</issn><eissn>1434-6079</eissn><abstract>High-order harmonic generation (HHG) has become an indispensable process for generating attosecond pulse trains and single attosecond pulses used in the observation of nuclear and electronic motion. As such, improved control of the HHG process is desirable, and one such possibility for this control is through the use of structured laser pulses. We present numerical results from solving the one-dimensional time-dependent Schrödinger equation for HHG from hydrogen using Airy and Gaussian pulses that differ only in their spectral phase. Airy pulses have identical power spectra to Gaussian pulses, but different spectral phases and temporal envelopes. We show that the use of Airy pulses results in less ground state depletion compared to the Gaussian pulse, while maintaining harmonic yield and cutoff. Our results demonstrate that Airy pulses with higher intensity can produce similar HHG spectra to lower intensity Gaussian pulses without depleting the ground state. The different temporal envelopes of the Gaussian and Airy pulses lead to changes in the dynamics of the HHG process, altering the time-dependence of the ground state population and the emission times of the high harmonics. Graphical abstract High-order harmonic generation (HHG) using an Airy pulse with a third order spectral phase results in less ground state depletion, but similar harmonic yield, compared to a Gaussian pulse. Top – schematic depiction of the 3-step HHG process for different intensity pulses. Bottom left – time-dependent ground state populations for Gaussian pulses showing that a more intense pulse causes more ground state depletion. Bottom middle – final ground state populations for Airy and Gaussian pulses as a function of intensity showing that Airy pulses result in less ground state depletion for a given intensity. Bottom right – HHG spectra for a more intense Airy pulse and a less intense Gaussian pulse exhibit similar shapes, magnitudes, and plateau cutoff values</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjd/s10053-024-00890-y</doi><orcidid>https://orcid.org/0000-0003-2689-982X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-6060
ispartof The European physical journal. D, Atomic, molecular, and optical physics, 2024-08, Vol.78 (8), Article 103
issn 1434-6060
1434-6079
language eng
recordid cdi_proquest_journals_3092847989
source Springer Nature - Complete Springer Journals
subjects Applications of Nonlinear Dynamics and Chaos Theory
Atomic
Attosecond pulses
Depletion
Emission spectra
Envelopes
Gaussian process
Ground state
Harmonic generations
Molecular
Optical and Plasma Physics
Physical Chemistry
Physics
Physics and Astronomy
Power spectra
Quantum Information Technology
Quantum Physics
Regular Article - Ultraintense and Ultrashort Laser Fields
Schrodinger equation
Spectroscopy/Spectrometry
Spintronics
Time dependence
title Spectral phase pulse shaping reduces ground state depletion in high-order harmonic generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A46%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20phase%20pulse%20shaping%20reduces%20ground%20state%20depletion%20in%20high-order%20harmonic%20generation&rft.jtitle=The%20European%20physical%20journal.%20D,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Aygun,%20J.&rft.date=2024-08-01&rft.volume=78&rft.issue=8&rft.artnum=103&rft.issn=1434-6060&rft.eissn=1434-6079&rft_id=info:doi/10.1140/epjd/s10053-024-00890-y&rft_dat=%3Cproquest_cross%3E3092847989%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092847989&rft_id=info:pmid/&rfr_iscdi=true