Fractality in resistive circuits: the Fibonacci resistor networks
We propose two new kinds of infinite resistor networks based on the Fibonacci sequence: a serial association of resistor sets connected in parallel (type 1) or a parallel association of resistor sets connected in series (type 2). We show that the sequence of the network’s equivalent resistance conve...
Gespeichert in:
Veröffentlicht in: | The European physical journal. B, Condensed matter physics Condensed matter physics, 2024-08, Vol.97 (8), Article 121 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | The European physical journal. B, Condensed matter physics |
container_volume | 97 |
creator | dos Anjos, Petrus H. R. Oliveira, Fernando A. Azevedo, David L. |
description | We propose two new kinds of infinite resistor networks based on the Fibonacci sequence: a serial association of resistor sets connected in parallel (type 1) or a parallel association of resistor sets connected in series (type 2). We show that the sequence of the network’s equivalent resistance converges uniformly in the parameter
α
=
r
2
r
1
∈
[
0
,
+
∞
)
, where
r
1
and
r
2
are the first and second resistors in the network. We also show that these networks exhibit self-similarity and scale invariance, which mimics a self-similar fractal. We also provide some generalizations, including resistor networks based on high-order Fibonacci sequences and other recursive combinatorial sequences.
Graphical abstract |
doi_str_mv | 10.1140/epjb/s10051-024-00750-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3092847965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092847965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c210t-4e0405dcdddb12c44913aa445fe40f44087a0167ec58ce7a20bd6495da710983</originalsourceid><addsrcrecordid>eNqFkMFOwzAMhiMEEmPwDFTiHOa0TtNymyYGSJO47B6lqQsZox1JBtqeno5OcORkH_7vt_Uxdi3gVgiECW1W1SQIACk4pMgBlAS-P2EjgRnyHLL89HdPi3N2EcIKAEQucMSmc29sNGsXd4lrE0_Bheg-KbHO262L4S6Jr5TMXdW1xlp3THQ-aSl-df4tXLKzxqwDXR3nmC3n98vZI188PzzNpgtuUwGRIwGCrG1d15VILWIpMmMQZUMIDSIUyvQ_KbKysKRMClWdYylrowSURTZmN0PtxncfWwpRr7qtb_uLOoMyLVCVuexTakhZ34XgqdEb796N32kB-qBLH3TpQZfudekfXXrfk8VAhp5oX8j_9f-HfgPpInHV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092847965</pqid></control><display><type>article</type><title>Fractality in resistive circuits: the Fibonacci resistor networks</title><source>SpringerLink Journals - AutoHoldings</source><creator>dos Anjos, Petrus H. R. ; Oliveira, Fernando A. ; Azevedo, David L.</creator><creatorcontrib>dos Anjos, Petrus H. R. ; Oliveira, Fernando A. ; Azevedo, David L.</creatorcontrib><description>We propose two new kinds of infinite resistor networks based on the Fibonacci sequence: a serial association of resistor sets connected in parallel (type 1) or a parallel association of resistor sets connected in series (type 2). We show that the sequence of the network’s equivalent resistance converges uniformly in the parameter
α
=
r
2
r
1
∈
[
0
,
+
∞
)
, where
r
1
and
r
2
are the first and second resistors in the network. We also show that these networks exhibit self-similarity and scale invariance, which mimics a self-similar fractal. We also provide some generalizations, including resistor networks based on high-order Fibonacci sequences and other recursive combinatorial sequences.
Graphical abstract</description><identifier>ISSN: 1434-6028</identifier><identifier>EISSN: 1434-6036</identifier><identifier>DOI: 10.1140/epjb/s10051-024-00750-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Combinatorial analysis ; Complex Systems ; Condensed Matter Physics ; Fibonacci numbers ; Fluid- and Aerodynamics ; Networks ; New Trends in Statistical Physics of Complex Systems: Theoretical and Experimental Approaches ; Physics ; Physics and Astronomy ; Resistors ; Scale invariance ; Self-similarity ; Sequences ; Solid State Physics ; Topical Review - Statistical and Nonlinear Physics</subject><ispartof>The European physical journal. B, Condensed matter physics, 2024-08, Vol.97 (8), Article 121</ispartof><rights>The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c210t-4e0405dcdddb12c44913aa445fe40f44087a0167ec58ce7a20bd6495da710983</cites><orcidid>0000-0002-3456-554X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjb/s10051-024-00750-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjb/s10051-024-00750-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>dos Anjos, Petrus H. R.</creatorcontrib><creatorcontrib>Oliveira, Fernando A.</creatorcontrib><creatorcontrib>Azevedo, David L.</creatorcontrib><title>Fractality in resistive circuits: the Fibonacci resistor networks</title><title>The European physical journal. B, Condensed matter physics</title><addtitle>Eur. Phys. J. B</addtitle><description>We propose two new kinds of infinite resistor networks based on the Fibonacci sequence: a serial association of resistor sets connected in parallel (type 1) or a parallel association of resistor sets connected in series (type 2). We show that the sequence of the network’s equivalent resistance converges uniformly in the parameter
α
=
r
2
r
1
∈
[
0
,
+
∞
)
, where
r
1
and
r
2
are the first and second resistors in the network. We also show that these networks exhibit self-similarity and scale invariance, which mimics a self-similar fractal. We also provide some generalizations, including resistor networks based on high-order Fibonacci sequences and other recursive combinatorial sequences.
Graphical abstract</description><subject>Combinatorial analysis</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Fibonacci numbers</subject><subject>Fluid- and Aerodynamics</subject><subject>Networks</subject><subject>New Trends in Statistical Physics of Complex Systems: Theoretical and Experimental Approaches</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Resistors</subject><subject>Scale invariance</subject><subject>Self-similarity</subject><subject>Sequences</subject><subject>Solid State Physics</subject><subject>Topical Review - Statistical and Nonlinear Physics</subject><issn>1434-6028</issn><issn>1434-6036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOwzAMhiMEEmPwDFTiHOa0TtNymyYGSJO47B6lqQsZox1JBtqeno5OcORkH_7vt_Uxdi3gVgiECW1W1SQIACk4pMgBlAS-P2EjgRnyHLL89HdPi3N2EcIKAEQucMSmc29sNGsXd4lrE0_Bheg-KbHO262L4S6Jr5TMXdW1xlp3THQ-aSl-df4tXLKzxqwDXR3nmC3n98vZI188PzzNpgtuUwGRIwGCrG1d15VILWIpMmMQZUMIDSIUyvQ_KbKysKRMClWdYylrowSURTZmN0PtxncfWwpRr7qtb_uLOoMyLVCVuexTakhZ34XgqdEb796N32kB-qBLH3TpQZfudekfXXrfk8VAhp5oX8j_9f-HfgPpInHV</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>dos Anjos, Petrus H. R.</creator><creator>Oliveira, Fernando A.</creator><creator>Azevedo, David L.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3456-554X</orcidid></search><sort><creationdate>20240801</creationdate><title>Fractality in resistive circuits: the Fibonacci resistor networks</title><author>dos Anjos, Petrus H. R. ; Oliveira, Fernando A. ; Azevedo, David L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c210t-4e0405dcdddb12c44913aa445fe40f44087a0167ec58ce7a20bd6495da710983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Combinatorial analysis</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Fibonacci numbers</topic><topic>Fluid- and Aerodynamics</topic><topic>Networks</topic><topic>New Trends in Statistical Physics of Complex Systems: Theoretical and Experimental Approaches</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Resistors</topic><topic>Scale invariance</topic><topic>Self-similarity</topic><topic>Sequences</topic><topic>Solid State Physics</topic><topic>Topical Review - Statistical and Nonlinear Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>dos Anjos, Petrus H. R.</creatorcontrib><creatorcontrib>Oliveira, Fernando A.</creatorcontrib><creatorcontrib>Azevedo, David L.</creatorcontrib><collection>CrossRef</collection><jtitle>The European physical journal. B, Condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>dos Anjos, Petrus H. R.</au><au>Oliveira, Fernando A.</au><au>Azevedo, David L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractality in resistive circuits: the Fibonacci resistor networks</atitle><jtitle>The European physical journal. B, Condensed matter physics</jtitle><stitle>Eur. Phys. J. B</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>97</volume><issue>8</issue><artnum>121</artnum><issn>1434-6028</issn><eissn>1434-6036</eissn><abstract>We propose two new kinds of infinite resistor networks based on the Fibonacci sequence: a serial association of resistor sets connected in parallel (type 1) or a parallel association of resistor sets connected in series (type 2). We show that the sequence of the network’s equivalent resistance converges uniformly in the parameter
α
=
r
2
r
1
∈
[
0
,
+
∞
)
, where
r
1
and
r
2
are the first and second resistors in the network. We also show that these networks exhibit self-similarity and scale invariance, which mimics a self-similar fractal. We also provide some generalizations, including resistor networks based on high-order Fibonacci sequences and other recursive combinatorial sequences.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjb/s10051-024-00750-z</doi><orcidid>https://orcid.org/0000-0002-3456-554X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-6028 |
ispartof | The European physical journal. B, Condensed matter physics, 2024-08, Vol.97 (8), Article 121 |
issn | 1434-6028 1434-6036 |
language | eng |
recordid | cdi_proquest_journals_3092847965 |
source | SpringerLink Journals - AutoHoldings |
subjects | Combinatorial analysis Complex Systems Condensed Matter Physics Fibonacci numbers Fluid- and Aerodynamics Networks New Trends in Statistical Physics of Complex Systems: Theoretical and Experimental Approaches Physics Physics and Astronomy Resistors Scale invariance Self-similarity Sequences Solid State Physics Topical Review - Statistical and Nonlinear Physics |
title | Fractality in resistive circuits: the Fibonacci resistor networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractality%20in%20resistive%20circuits:%20the%20Fibonacci%20resistor%20networks&rft.jtitle=The%20European%20physical%20journal.%20B,%20Condensed%20matter%20physics&rft.au=dos%20Anjos,%20Petrus%20H.%20R.&rft.date=2024-08-01&rft.volume=97&rft.issue=8&rft.artnum=121&rft.issn=1434-6028&rft.eissn=1434-6036&rft_id=info:doi/10.1140/epjb/s10051-024-00750-z&rft_dat=%3Cproquest_cross%3E3092847965%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092847965&rft_id=info:pmid/&rfr_iscdi=true |