Fractality in resistive circuits: the Fibonacci resistor networks

We propose two new kinds of infinite resistor networks based on the Fibonacci sequence: a serial association of resistor sets connected in parallel (type 1) or a parallel association of resistor sets connected in series (type 2). We show that the sequence of the network’s equivalent resistance conve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. B, Condensed matter physics Condensed matter physics, 2024-08, Vol.97 (8), Article 121
Hauptverfasser: dos Anjos, Petrus H. R., Oliveira, Fernando A., Azevedo, David L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose two new kinds of infinite resistor networks based on the Fibonacci sequence: a serial association of resistor sets connected in parallel (type 1) or a parallel association of resistor sets connected in series (type 2). We show that the sequence of the network’s equivalent resistance converges uniformly in the parameter α = r 2 r 1 ∈ [ 0 , + ∞ ) , where r 1 and r 2 are the first and second resistors in the network. We also show that these networks exhibit self-similarity and scale invariance, which mimics a self-similar fractal. We also provide some generalizations, including resistor networks based on high-order Fibonacci sequences and other recursive combinatorial sequences. Graphical abstract
ISSN:1434-6028
1434-6036
DOI:10.1140/epjb/s10051-024-00750-z