Improved bandwidth and radiation efficiency of series‐fed patch array using cascaded inset‐fed mechanism

In this letter, a novel design approach of low‐sidelobe series‐fed patch antenna array is proposed which has enhanced bandwidth and radiation efficiency. It is based on the fact that the out‐to‐input voltage amplitude ratio of an inset‐fed patch antenna element could be manipulated by changing the i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics Letters 2022-11, Vol.58 (23), p.866-868
Hauptverfasser: Yi, Hao, Mu, Yajie, Han, Jiaqi, Li, Long
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 868
container_issue 23
container_start_page 866
container_title Electronics Letters
container_volume 58
creator Yi, Hao
Mu, Yajie
Han, Jiaqi
Li, Long
description In this letter, a novel design approach of low‐sidelobe series‐fed patch antenna array is proposed which has enhanced bandwidth and radiation efficiency. It is based on the fact that the out‐to‐input voltage amplitude ratio of an inset‐fed patch antenna element could be manipulated by changing the insert depth of the output microstrip line. Thus, by utilizing a cascaded inset‐fed mechanism, the series‐fed patch antenna array achieves voltage amplitude tapering for desired sidelobe suppression. The step‐down transformer model and the cascaded step‐down transformer model are presented to reveal the design approach as the equivalent circuit characterization of the antenna element. As a proof‐of‐concept, a 12‐element series‐fed patch antenna array operating 24 GHz with a 20 dB sidelobe level (SLL) is designed, simulated, and prototyped. It could be found that, in contrast to the conventional width‐tapering patch antenna array, the proposed design achieves an impedance bandwidth broadening, from 1.7% to 2.5%, and a radiation efficiency improvement of 7% meanwhile.
doi_str_mv 10.1049/ell2.12641
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3092807144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744046800</galeid><sourcerecordid>A744046800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2651-7bfefc05b100277fbd120c947b3650e635911b18028814dacb9ec84aee7e9f343</originalsourceid><addsrcrecordid>eNp9kE1u2zAQhYmiAeom2eQEArorIGeGon64NIy0CWAgmwTIjqCoYUJDolxSbuBdjpAz5iSlI6-7Gg75vTecx9gVwhJByGvqe75EXgn8whZYlJBLxKevbAGARV6iFN_Y9xi3qeVS1gvW3w27MP6lLmu1715dN71k6ZAF3Tk9udFnZK0zjrw5ZKPNIgVH8ePt3SbJTk8m4SHoQ7aPzj9nRkeju_TkfKTphA1kXrR3cbhgZ1b3kS5P9Zw9_rp5WN_mm_vfd-vVJje8KjGvW0vWQNkiAK9r23bIwUhRt0VVAlVFmZZqsQHeNCg6bVpJphGaqCZpC1Gcsx-zb1rtz57ipLbjPvg0UhUgeQM1iiO1nKln3ZNy3o5T0EYf_z84M3qyLt2vaiFAVA1AEvycBSaMMQayahfcoMNBIahj_OoYv_qMP8E4w6_J5fAfUt1sNnzW_ANtlImP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092807144</pqid></control><display><type>article</type><title>Improved bandwidth and radiation efficiency of series‐fed patch array using cascaded inset‐fed mechanism</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Yi, Hao ; Mu, Yajie ; Han, Jiaqi ; Li, Long</creator><creatorcontrib>Yi, Hao ; Mu, Yajie ; Han, Jiaqi ; Li, Long</creatorcontrib><description>In this letter, a novel design approach of low‐sidelobe series‐fed patch antenna array is proposed which has enhanced bandwidth and radiation efficiency. It is based on the fact that the out‐to‐input voltage amplitude ratio of an inset‐fed patch antenna element could be manipulated by changing the insert depth of the output microstrip line. Thus, by utilizing a cascaded inset‐fed mechanism, the series‐fed patch antenna array achieves voltage amplitude tapering for desired sidelobe suppression. The step‐down transformer model and the cascaded step‐down transformer model are presented to reveal the design approach as the equivalent circuit characterization of the antenna element. As a proof‐of‐concept, a 12‐element series‐fed patch antenna array operating 24 GHz with a 20 dB sidelobe level (SLL) is designed, simulated, and prototyped. It could be found that, in contrast to the conventional width‐tapering patch antenna array, the proposed design achieves an impedance bandwidth broadening, from 1.7% to 2.5%, and a radiation efficiency improvement of 7% meanwhile.</description><identifier>ISSN: 0013-5194</identifier><identifier>EISSN: 1350-911X</identifier><identifier>DOI: 10.1049/ell2.12641</identifier><language>eng</language><publisher>Stevenage: John Wiley &amp; Sons, Inc</publisher><subject>Amplitudes ; Analysis ; Antenna arrays ; Antenna design ; Antennas ; Antennas (Electronics) ; Arrays ; Bandwidths ; Design ; Efficiency ; Electric potential ; Equivalent circuits ; Microstrip transmission lines ; Patch antennas ; Radiation ; Sidelobe reduction ; Sidelobes ; Tapering ; Transformers ; Voltage</subject><ispartof>Electronics Letters, 2022-11, Vol.58 (23), p.866-868</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Ltd on behalf of The Institution of Engineering and Technology.</rights><rights>COPYRIGHT 2022 John Wiley &amp; Sons, Inc.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2651-7bfefc05b100277fbd120c947b3650e635911b18028814dacb9ec84aee7e9f343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fell2.12641$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fell2.12641$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,1412,11543,27905,27906,45555,45556,46033,46457</link.rule.ids></links><search><creatorcontrib>Yi, Hao</creatorcontrib><creatorcontrib>Mu, Yajie</creatorcontrib><creatorcontrib>Han, Jiaqi</creatorcontrib><creatorcontrib>Li, Long</creatorcontrib><title>Improved bandwidth and radiation efficiency of series‐fed patch array using cascaded inset‐fed mechanism</title><title>Electronics Letters</title><description>In this letter, a novel design approach of low‐sidelobe series‐fed patch antenna array is proposed which has enhanced bandwidth and radiation efficiency. It is based on the fact that the out‐to‐input voltage amplitude ratio of an inset‐fed patch antenna element could be manipulated by changing the insert depth of the output microstrip line. Thus, by utilizing a cascaded inset‐fed mechanism, the series‐fed patch antenna array achieves voltage amplitude tapering for desired sidelobe suppression. The step‐down transformer model and the cascaded step‐down transformer model are presented to reveal the design approach as the equivalent circuit characterization of the antenna element. As a proof‐of‐concept, a 12‐element series‐fed patch antenna array operating 24 GHz with a 20 dB sidelobe level (SLL) is designed, simulated, and prototyped. It could be found that, in contrast to the conventional width‐tapering patch antenna array, the proposed design achieves an impedance bandwidth broadening, from 1.7% to 2.5%, and a radiation efficiency improvement of 7% meanwhile.</description><subject>Amplitudes</subject><subject>Analysis</subject><subject>Antenna arrays</subject><subject>Antenna design</subject><subject>Antennas</subject><subject>Antennas (Electronics)</subject><subject>Arrays</subject><subject>Bandwidths</subject><subject>Design</subject><subject>Efficiency</subject><subject>Electric potential</subject><subject>Equivalent circuits</subject><subject>Microstrip transmission lines</subject><subject>Patch antennas</subject><subject>Radiation</subject><subject>Sidelobe reduction</subject><subject>Sidelobes</subject><subject>Tapering</subject><subject>Transformers</subject><subject>Voltage</subject><issn>0013-5194</issn><issn>1350-911X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1u2zAQhYmiAeom2eQEArorIGeGon64NIy0CWAgmwTIjqCoYUJDolxSbuBdjpAz5iSlI6-7Gg75vTecx9gVwhJByGvqe75EXgn8whZYlJBLxKevbAGARV6iFN_Y9xi3qeVS1gvW3w27MP6lLmu1715dN71k6ZAF3Tk9udFnZK0zjrw5ZKPNIgVH8ePt3SbJTk8m4SHoQ7aPzj9nRkeju_TkfKTphA1kXrR3cbhgZ1b3kS5P9Zw9_rp5WN_mm_vfd-vVJje8KjGvW0vWQNkiAK9r23bIwUhRt0VVAlVFmZZqsQHeNCg6bVpJphGaqCZpC1Gcsx-zb1rtz57ipLbjPvg0UhUgeQM1iiO1nKln3ZNy3o5T0EYf_z84M3qyLt2vaiFAVA1AEvycBSaMMQayahfcoMNBIahj_OoYv_qMP8E4w6_J5fAfUt1sNnzW_ANtlImP</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Yi, Hao</creator><creator>Mu, Yajie</creator><creator>Han, Jiaqi</creator><creator>Li, Long</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>202211</creationdate><title>Improved bandwidth and radiation efficiency of series‐fed patch array using cascaded inset‐fed mechanism</title><author>Yi, Hao ; Mu, Yajie ; Han, Jiaqi ; Li, Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2651-7bfefc05b100277fbd120c947b3650e635911b18028814dacb9ec84aee7e9f343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amplitudes</topic><topic>Analysis</topic><topic>Antenna arrays</topic><topic>Antenna design</topic><topic>Antennas</topic><topic>Antennas (Electronics)</topic><topic>Arrays</topic><topic>Bandwidths</topic><topic>Design</topic><topic>Efficiency</topic><topic>Electric potential</topic><topic>Equivalent circuits</topic><topic>Microstrip transmission lines</topic><topic>Patch antennas</topic><topic>Radiation</topic><topic>Sidelobe reduction</topic><topic>Sidelobes</topic><topic>Tapering</topic><topic>Transformers</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yi, Hao</creatorcontrib><creatorcontrib>Mu, Yajie</creatorcontrib><creatorcontrib>Han, Jiaqi</creatorcontrib><creatorcontrib>Li, Long</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Electronics Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yi, Hao</au><au>Mu, Yajie</au><au>Han, Jiaqi</au><au>Li, Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved bandwidth and radiation efficiency of series‐fed patch array using cascaded inset‐fed mechanism</atitle><jtitle>Electronics Letters</jtitle><date>2022-11</date><risdate>2022</risdate><volume>58</volume><issue>23</issue><spage>866</spage><epage>868</epage><pages>866-868</pages><issn>0013-5194</issn><eissn>1350-911X</eissn><abstract>In this letter, a novel design approach of low‐sidelobe series‐fed patch antenna array is proposed which has enhanced bandwidth and radiation efficiency. It is based on the fact that the out‐to‐input voltage amplitude ratio of an inset‐fed patch antenna element could be manipulated by changing the insert depth of the output microstrip line. Thus, by utilizing a cascaded inset‐fed mechanism, the series‐fed patch antenna array achieves voltage amplitude tapering for desired sidelobe suppression. The step‐down transformer model and the cascaded step‐down transformer model are presented to reveal the design approach as the equivalent circuit characterization of the antenna element. As a proof‐of‐concept, a 12‐element series‐fed patch antenna array operating 24 GHz with a 20 dB sidelobe level (SLL) is designed, simulated, and prototyped. It could be found that, in contrast to the conventional width‐tapering patch antenna array, the proposed design achieves an impedance bandwidth broadening, from 1.7% to 2.5%, and a radiation efficiency improvement of 7% meanwhile.</abstract><cop>Stevenage</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1049/ell2.12641</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-5194
ispartof Electronics Letters, 2022-11, Vol.58 (23), p.866-868
issn 0013-5194
1350-911X
language eng
recordid cdi_proquest_journals_3092807144
source DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection
subjects Amplitudes
Analysis
Antenna arrays
Antenna design
Antennas
Antennas (Electronics)
Arrays
Bandwidths
Design
Efficiency
Electric potential
Equivalent circuits
Microstrip transmission lines
Patch antennas
Radiation
Sidelobe reduction
Sidelobes
Tapering
Transformers
Voltage
title Improved bandwidth and radiation efficiency of series‐fed patch array using cascaded inset‐fed mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A34%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20bandwidth%20and%20radiation%20efficiency%20of%20series%E2%80%90fed%20patch%20array%20using%20cascaded%20inset%E2%80%90fed%20mechanism&rft.jtitle=Electronics%20Letters&rft.au=Yi,%20Hao&rft.date=2022-11&rft.volume=58&rft.issue=23&rft.spage=866&rft.epage=868&rft.pages=866-868&rft.issn=0013-5194&rft.eissn=1350-911X&rft_id=info:doi/10.1049/ell2.12641&rft_dat=%3Cgale_proqu%3EA744046800%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092807144&rft_id=info:pmid/&rft_galeid=A744046800&rfr_iscdi=true