A new design of channel denoiser using residual autoencoder

A joint neural network decoder and denoiser scheme demonstrated superior performance compared to individual modules. However, there is still a limitation that the existing denoisers cannot effectively learn patterns of encoded signals. To overcome the limitation, a novel denoiser based on a residual...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics letters 2023-01, Vol.59 (2), p.n/a
Hauptverfasser: Han, Soyoung, Kim, Junghyun, Song, Hong‐Yeop
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Electronics letters
container_volume 59
creator Han, Soyoung
Kim, Junghyun
Song, Hong‐Yeop
description A joint neural network decoder and denoiser scheme demonstrated superior performance compared to individual modules. However, there is still a limitation that the existing denoisers cannot effectively learn patterns of encoded signals. To overcome the limitation, a novel denoiser based on a residual autoencoder structure is proposed. The proposed denoiser speeds up the training process and boosts the performance due to its structure effectively extracting compressed features. For the evaluation, a joint system model with a hyper‐graph‐network decoder that is known for outstanding decoding performance is considered. Simulation results show that this denoiser outperforms the existing denoisers. Furthermore, the proposed joint model shows significant performance improvement compared to the individual hyper‐graph‐network decoder with only 1% of the number of epochs for the training. A novel denoiser based on a residual autoencoder structure is proposed. The proposed denoiser speeds up training process and boosts the performance due to its structure effectively extracting compressed features. Simulation results show that this denoiser outperforms all the existing denoisers.
doi_str_mv 10.1049/ell2.12711
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3092807138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092807138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3371-fb2c25f049502c99a71ebcd7c460a4e6b8bbcccb8dd23c58b7e5136c19a88e5b3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsXn2DBm7A1k2y6CZ5KaVVY8KLgLSTZ2bplTWrSpfTt3bqePQ0zfDPz8xFyC3QGtFAP2HVsBqwEOCMT4ILmCuDjnEwoBZ4LUMUluUppO7RMqXJCHheZx0NWY2o3PgtN5j6N99gNEx_ahDHrU-s3WRyAujddZvp9QO9CjfGaXDSmS3jzV6fkfb16Wz7n1evTy3JR5Y7zEvLGMsdEM8QTlDmlTAloXV26Yk5NgXMrrXXOWVnXjDshbYkC-NyBMlKisHxK7sa7uxi-e0x7vQ199MNLzalikpbA5UDdj5SLIaWIjd7F9svEowaqT3L0SY7-lTPAMMKHtsPjP6ReVRUbd34A_zNmMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092807138</pqid></control><display><type>article</type><title>A new design of channel denoiser using residual autoencoder</title><source>Wiley-Blackwell Open Access Titles</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Han, Soyoung ; Kim, Junghyun ; Song, Hong‐Yeop</creator><creatorcontrib>Han, Soyoung ; Kim, Junghyun ; Song, Hong‐Yeop</creatorcontrib><description>A joint neural network decoder and denoiser scheme demonstrated superior performance compared to individual modules. However, there is still a limitation that the existing denoisers cannot effectively learn patterns of encoded signals. To overcome the limitation, a novel denoiser based on a residual autoencoder structure is proposed. The proposed denoiser speeds up the training process and boosts the performance due to its structure effectively extracting compressed features. For the evaluation, a joint system model with a hyper‐graph‐network decoder that is known for outstanding decoding performance is considered. Simulation results show that this denoiser outperforms the existing denoisers. Furthermore, the proposed joint model shows significant performance improvement compared to the individual hyper‐graph‐network decoder with only 1% of the number of epochs for the training. A novel denoiser based on a residual autoencoder structure is proposed. The proposed denoiser speeds up training process and boosts the performance due to its structure effectively extracting compressed features. Simulation results show that this denoiser outperforms all the existing denoisers.</description><identifier>ISSN: 0013-5194</identifier><identifier>EISSN: 1350-911X</identifier><identifier>DOI: 10.1049/ell2.12711</identifier><language>eng</language><publisher>Stevenage: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; artificial intelligence ; channel coding ; Codes ; Decoding ; Neural networks ; Performance evaluation ; wireless communications</subject><ispartof>Electronics letters, 2023-01, Vol.59 (2), p.n/a</ispartof><rights>2023 The Authors. published by John Wiley &amp; Sons Ltd on behalf of The Institution of Engineering and Technology.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3371-fb2c25f049502c99a71ebcd7c460a4e6b8bbcccb8dd23c58b7e5136c19a88e5b3</citedby><cites>FETCH-LOGICAL-c3371-fb2c25f049502c99a71ebcd7c460a4e6b8bbcccb8dd23c58b7e5136c19a88e5b3</cites><orcidid>0000-0003-0265-5169 ; 0000-0001-8764-9424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fell2.12711$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fell2.12711$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids></links><search><creatorcontrib>Han, Soyoung</creatorcontrib><creatorcontrib>Kim, Junghyun</creatorcontrib><creatorcontrib>Song, Hong‐Yeop</creatorcontrib><title>A new design of channel denoiser using residual autoencoder</title><title>Electronics letters</title><description>A joint neural network decoder and denoiser scheme demonstrated superior performance compared to individual modules. However, there is still a limitation that the existing denoisers cannot effectively learn patterns of encoded signals. To overcome the limitation, a novel denoiser based on a residual autoencoder structure is proposed. The proposed denoiser speeds up the training process and boosts the performance due to its structure effectively extracting compressed features. For the evaluation, a joint system model with a hyper‐graph‐network decoder that is known for outstanding decoding performance is considered. Simulation results show that this denoiser outperforms the existing denoisers. Furthermore, the proposed joint model shows significant performance improvement compared to the individual hyper‐graph‐network decoder with only 1% of the number of epochs for the training. A novel denoiser based on a residual autoencoder structure is proposed. The proposed denoiser speeds up training process and boosts the performance due to its structure effectively extracting compressed features. Simulation results show that this denoiser outperforms all the existing denoisers.</description><subject>Algorithms</subject><subject>artificial intelligence</subject><subject>channel coding</subject><subject>Codes</subject><subject>Decoding</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>wireless communications</subject><issn>0013-5194</issn><issn>1350-911X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kMFKAzEQhoMoWKsXn2DBm7A1k2y6CZ5KaVVY8KLgLSTZ2bplTWrSpfTt3bqePQ0zfDPz8xFyC3QGtFAP2HVsBqwEOCMT4ILmCuDjnEwoBZ4LUMUluUppO7RMqXJCHheZx0NWY2o3PgtN5j6N99gNEx_ahDHrU-s3WRyAujddZvp9QO9CjfGaXDSmS3jzV6fkfb16Wz7n1evTy3JR5Y7zEvLGMsdEM8QTlDmlTAloXV26Yk5NgXMrrXXOWVnXjDshbYkC-NyBMlKisHxK7sa7uxi-e0x7vQ199MNLzalikpbA5UDdj5SLIaWIjd7F9svEowaqT3L0SY7-lTPAMMKHtsPjP6ReVRUbd34A_zNmMQ</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Han, Soyoung</creator><creator>Kim, Junghyun</creator><creator>Song, Hong‐Yeop</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0265-5169</orcidid><orcidid>https://orcid.org/0000-0001-8764-9424</orcidid></search><sort><creationdate>202301</creationdate><title>A new design of channel denoiser using residual autoencoder</title><author>Han, Soyoung ; Kim, Junghyun ; Song, Hong‐Yeop</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3371-fb2c25f049502c99a71ebcd7c460a4e6b8bbcccb8dd23c58b7e5136c19a88e5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>artificial intelligence</topic><topic>channel coding</topic><topic>Codes</topic><topic>Decoding</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Soyoung</creatorcontrib><creatorcontrib>Kim, Junghyun</creatorcontrib><creatorcontrib>Song, Hong‐Yeop</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Electronics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Soyoung</au><au>Kim, Junghyun</au><au>Song, Hong‐Yeop</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new design of channel denoiser using residual autoencoder</atitle><jtitle>Electronics letters</jtitle><date>2023-01</date><risdate>2023</risdate><volume>59</volume><issue>2</issue><epage>n/a</epage><issn>0013-5194</issn><eissn>1350-911X</eissn><abstract>A joint neural network decoder and denoiser scheme demonstrated superior performance compared to individual modules. However, there is still a limitation that the existing denoisers cannot effectively learn patterns of encoded signals. To overcome the limitation, a novel denoiser based on a residual autoencoder structure is proposed. The proposed denoiser speeds up the training process and boosts the performance due to its structure effectively extracting compressed features. For the evaluation, a joint system model with a hyper‐graph‐network decoder that is known for outstanding decoding performance is considered. Simulation results show that this denoiser outperforms the existing denoisers. Furthermore, the proposed joint model shows significant performance improvement compared to the individual hyper‐graph‐network decoder with only 1% of the number of epochs for the training. A novel denoiser based on a residual autoencoder structure is proposed. The proposed denoiser speeds up training process and boosts the performance due to its structure effectively extracting compressed features. Simulation results show that this denoiser outperforms all the existing denoisers.</abstract><cop>Stevenage</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1049/ell2.12711</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0003-0265-5169</orcidid><orcidid>https://orcid.org/0000-0001-8764-9424</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-5194
ispartof Electronics letters, 2023-01, Vol.59 (2), p.n/a
issn 0013-5194
1350-911X
language eng
recordid cdi_proquest_journals_3092807138
source Wiley-Blackwell Open Access Titles; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
artificial intelligence
channel coding
Codes
Decoding
Neural networks
Performance evaluation
wireless communications
title A new design of channel denoiser using residual autoencoder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T17%3A10%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20design%20of%20channel%20denoiser%20using%20residual%20autoencoder&rft.jtitle=Electronics%20letters&rft.au=Han,%20Soyoung&rft.date=2023-01&rft.volume=59&rft.issue=2&rft.epage=n/a&rft.issn=0013-5194&rft.eissn=1350-911X&rft_id=info:doi/10.1049/ell2.12711&rft_dat=%3Cproquest_cross%3E3092807138%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092807138&rft_id=info:pmid/&rfr_iscdi=true