Learning causality with graphs
Recent years have witnessed a rocketing growth of machine learning methods on graph data, especially those powered by effective neural networks. Despite their success in different real‐world scenarios, the majority of these methods on graphs only focus on predictive or descriptive tasks, but lack co...
Gespeichert in:
Veröffentlicht in: | The AI magazine 2022-12, Vol.43 (4), p.365-375 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 375 |
---|---|
container_issue | 4 |
container_start_page | 365 |
container_title | The AI magazine |
container_volume | 43 |
creator | Ma, Jing Li, Jundong |
description | Recent years have witnessed a rocketing growth of machine learning methods on graph data, especially those powered by effective neural networks. Despite their success in different real‐world scenarios, the majority of these methods on graphs only focus on predictive or descriptive tasks, but lack consideration of causality. Causal inference can reveal the causality inside data, promote human understanding of the learning process and model prediction, and serve as a significant component of artificial intelligence (AI). An important problem in causal inference is causal effect estimation, which aims to estimate the causal effects of a certain treatment (e.g., prescription of medicine) on an outcome (e.g., cure of disease) at an individual level (e.g., each patient) or a population level (e.g., a group of patients). In this paper, we introduce the background of causal effect estimation from observational data, envision the challenges of causal effect estimation with graphs, and then summarize representative approaches of causal effect estimation with graphs in recent years. Furthermore, we provide some insights for future research directions in related area. Link to video : https://youtu.be/BpDPOOqw‐ns |
doi_str_mv | 10.1002/aaai.12070 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3092804822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092804822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3370-ac190c7fb9bae60f22dfa597a475d6edba75d8599b49cb01f87f283798fe968a3</originalsourceid><addsrcrecordid>eNp9j01Lw0AURQdRMFY3_gAJuBNS38wk87EMxWqh4EbXw0sy06bEJM6klPx7U-Pa1d2cey-HkHsKSwrAnhGxXlIGEi5IxLikiRaMXpIIJFdJKoBdk5sQDgAgFBcRedha9G3d7uISjwGbehjjUz3s453Hfh9uyZXDJti7v1yQz_XLx-ot2b6_blb5Nik5l5BgSTWU0hW6QCvAMVY5zLTEVGaVsFWBU6pM6yLVZQHUKemY4lIrZ7VQyBfkcd7tffd9tGEwh-7o2-nScNBMQaoYm6inmSp9F4K3zvS-_kI_Ggrm7G_O_ubXf4LpDJ_qxo7_kCbP883c-QHk1Vto</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092804822</pqid></control><display><type>article</type><title>Learning causality with graphs</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Ma, Jing ; Li, Jundong</creator><creatorcontrib>Ma, Jing ; Li, Jundong</creatorcontrib><description>Recent years have witnessed a rocketing growth of machine learning methods on graph data, especially those powered by effective neural networks. Despite their success in different real‐world scenarios, the majority of these methods on graphs only focus on predictive or descriptive tasks, but lack consideration of causality. Causal inference can reveal the causality inside data, promote human understanding of the learning process and model prediction, and serve as a significant component of artificial intelligence (AI). An important problem in causal inference is causal effect estimation, which aims to estimate the causal effects of a certain treatment (e.g., prescription of medicine) on an outcome (e.g., cure of disease) at an individual level (e.g., each patient) or a population level (e.g., a group of patients). In this paper, we introduce the background of causal effect estimation from observational data, envision the challenges of causal effect estimation with graphs, and then summarize representative approaches of causal effect estimation with graphs in recent years. Furthermore, we provide some insights for future research directions in related area. Link to video : https://youtu.be/BpDPOOqw‐ns</description><identifier>ISSN: 0738-4602</identifier><identifier>EISSN: 2371-9621</identifier><identifier>DOI: 10.1002/aaai.12070</identifier><language>eng</language><publisher>La Canada: John Wiley & Sons, Inc</publisher><subject>Artificial intelligence ; Causality ; Deep learning ; Graphs ; Inference ; Machine learning ; Neural networks ; Predictions ; Social networks</subject><ispartof>The AI magazine, 2022-12, Vol.43 (4), p.365-375</ispartof><rights>2022 The Authors. published by Wiley Periodicals LLC on behalf of the Association for the Advancement of Artificial Intelligence.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3370-ac190c7fb9bae60f22dfa597a475d6edba75d8599b49cb01f87f283798fe968a3</citedby><cites>FETCH-LOGICAL-c3370-ac190c7fb9bae60f22dfa597a475d6edba75d8599b49cb01f87f283798fe968a3</cites><orcidid>0000-0003-4237-6607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faaai.12070$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faaai.12070$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,11564,27926,27927,46054,46478</link.rule.ids></links><search><creatorcontrib>Ma, Jing</creatorcontrib><creatorcontrib>Li, Jundong</creatorcontrib><title>Learning causality with graphs</title><title>The AI magazine</title><description>Recent years have witnessed a rocketing growth of machine learning methods on graph data, especially those powered by effective neural networks. Despite their success in different real‐world scenarios, the majority of these methods on graphs only focus on predictive or descriptive tasks, but lack consideration of causality. Causal inference can reveal the causality inside data, promote human understanding of the learning process and model prediction, and serve as a significant component of artificial intelligence (AI). An important problem in causal inference is causal effect estimation, which aims to estimate the causal effects of a certain treatment (e.g., prescription of medicine) on an outcome (e.g., cure of disease) at an individual level (e.g., each patient) or a population level (e.g., a group of patients). In this paper, we introduce the background of causal effect estimation from observational data, envision the challenges of causal effect estimation with graphs, and then summarize representative approaches of causal effect estimation with graphs in recent years. Furthermore, we provide some insights for future research directions in related area. Link to video : https://youtu.be/BpDPOOqw‐ns</description><subject>Artificial intelligence</subject><subject>Causality</subject><subject>Deep learning</subject><subject>Graphs</subject><subject>Inference</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Predictions</subject><subject>Social networks</subject><issn>0738-4602</issn><issn>2371-9621</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9j01Lw0AURQdRMFY3_gAJuBNS38wk87EMxWqh4EbXw0sy06bEJM6klPx7U-Pa1d2cey-HkHsKSwrAnhGxXlIGEi5IxLikiRaMXpIIJFdJKoBdk5sQDgAgFBcRedha9G3d7uISjwGbehjjUz3s453Hfh9uyZXDJti7v1yQz_XLx-ot2b6_blb5Nik5l5BgSTWU0hW6QCvAMVY5zLTEVGaVsFWBU6pM6yLVZQHUKemY4lIrZ7VQyBfkcd7tffd9tGEwh-7o2-nScNBMQaoYm6inmSp9F4K3zvS-_kI_Ggrm7G_O_ubXf4LpDJ_qxo7_kCbP883c-QHk1Vto</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Ma, Jing</creator><creator>Li, Jundong</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>U9A</scope><orcidid>https://orcid.org/0000-0003-4237-6607</orcidid></search><sort><creationdate>20221201</creationdate><title>Learning causality with graphs</title><author>Ma, Jing ; Li, Jundong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3370-ac190c7fb9bae60f22dfa597a475d6edba75d8599b49cb01f87f283798fe968a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Causality</topic><topic>Deep learning</topic><topic>Graphs</topic><topic>Inference</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Predictions</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Jing</creatorcontrib><creatorcontrib>Li, Jundong</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Career & Technical Education Database</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>The AI magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Jing</au><au>Li, Jundong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning causality with graphs</atitle><jtitle>The AI magazine</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>43</volume><issue>4</issue><spage>365</spage><epage>375</epage><pages>365-375</pages><issn>0738-4602</issn><eissn>2371-9621</eissn><abstract>Recent years have witnessed a rocketing growth of machine learning methods on graph data, especially those powered by effective neural networks. Despite their success in different real‐world scenarios, the majority of these methods on graphs only focus on predictive or descriptive tasks, but lack consideration of causality. Causal inference can reveal the causality inside data, promote human understanding of the learning process and model prediction, and serve as a significant component of artificial intelligence (AI). An important problem in causal inference is causal effect estimation, which aims to estimate the causal effects of a certain treatment (e.g., prescription of medicine) on an outcome (e.g., cure of disease) at an individual level (e.g., each patient) or a population level (e.g., a group of patients). In this paper, we introduce the background of causal effect estimation from observational data, envision the challenges of causal effect estimation with graphs, and then summarize representative approaches of causal effect estimation with graphs in recent years. Furthermore, we provide some insights for future research directions in related area. Link to video : https://youtu.be/BpDPOOqw‐ns</abstract><cop>La Canada</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/aaai.12070</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4237-6607</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0738-4602 |
ispartof | The AI magazine, 2022-12, Vol.43 (4), p.365-375 |
issn | 0738-4602 2371-9621 |
language | eng |
recordid | cdi_proquest_journals_3092804822 |
source | EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
subjects | Artificial intelligence Causality Deep learning Graphs Inference Machine learning Neural networks Predictions Social networks |
title | Learning causality with graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T00%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20causality%20with%20graphs&rft.jtitle=The%20AI%20magazine&rft.au=Ma,%20Jing&rft.date=2022-12-01&rft.volume=43&rft.issue=4&rft.spage=365&rft.epage=375&rft.pages=365-375&rft.issn=0738-4602&rft.eissn=2371-9621&rft_id=info:doi/10.1002/aaai.12070&rft_dat=%3Cproquest_cross%3E3092804822%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092804822&rft_id=info:pmid/&rfr_iscdi=true |