An Efficient and Accurate Penalty-projection Eddy Viscosity Algorithm for Stochastic Magnetohydrodynamic Flow Problems

We propose, analyze, and test a penalty projection-based robust efficient and accurate algorithm for the Uncertainty Quantification (UQ) of the time-dependent Magnetohydrodynamic (MHD) flow problems in convection-dominated regimes. The algorithm uses the Elsässer variables formulation and discrete H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2024-10, Vol.101 (1), p.2, Article 2
Hauptverfasser: Mohebujjaman, Muhammad, Miranda, Julian, Mahbub, Md. Abdullah Al, Xiao, Mengying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 2
container_title Journal of scientific computing
container_volume 101
creator Mohebujjaman, Muhammad
Miranda, Julian
Mahbub, Md. Abdullah Al
Xiao, Mengying
description We propose, analyze, and test a penalty projection-based robust efficient and accurate algorithm for the Uncertainty Quantification (UQ) of the time-dependent Magnetohydrodynamic (MHD) flow problems in convection-dominated regimes. The algorithm uses the Elsässer variables formulation and discrete Hodge decomposition to decouple the stochastic MHD system into four sub-problems (at each time-step for each realization) which are much easier to solve than solving the coupled saddle point problems. Each of the sub-problems is designed in a sophisticated way so that at each time-step the system matrix remains the same for all the realizations but with different right-hand-side vectors which allows saving a huge amount of computer memory and computational time. Moreover, the scheme is equipped with Ensemble Eddy Viscosity (EEV) and grad-div stabilization terms. The unconditional stability with respect to the time-step size of the algorithm is proven rigorously. We prove the proposed scheme converges to an equivalent non-projection-based coupled MHD scheme for large grad-div stabilization parameter values. We examine how Stochastic Collocation Methods (SCMs) can be combined with the proposed penalty projection UQ algorithm. Finally, a series of numerical experiments are given which verify the predicted convergence rates, show the algorithm’s performance on benchmark channel flow over a rectangular step, a regularized lid-driven cavity problem with high random Reynolds number and high random magnetic Reynolds number, and the impact of the EEV stabilization in the MHD UQ algorithm.
doi_str_mv 10.1007/s10915-024-02633-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3092522364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092522364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-594cf4dd607dd609a186785ff480e89748b50169b175e06173814a7e00d1b93e3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPA8-pkk90kx1JaFSoW_HMN2Wy23bLd1CRV9tubWsGbh5mB4b0H74fQNYFbAsDvAgFJigxylqakNBtO0IgUnGa8lOQUjUCIIuOMs3N0EcIGAKSQ-Qh9Tno8a5rWtLaPWPc1nhiz9zpavLS97uKQ7bzbWBNbl5R1PeD3NhgX2jjgSbdyvo3rLW6cxy_RmbUOsTX4Sa96G916qL2rh15v02_euS-89K7q7DZcorNGd8Fe_d4xepvPXqcP2eL5_nE6WWQmB4hZIZlpWF2XwA9LaiJKLoqmYQKskJyJqgBSyorwwkJJOBWEaW4BalJJaukY3RxzU4mPvQ1Rbdzep15BUZB5kee0ZEmVH1XGuxC8bdTOt1vtB0VAHfiqI1-V-KofvmpIJno0hSTuV9b_Rf_j-gZlzH8_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092522364</pqid></control><display><type>article</type><title>An Efficient and Accurate Penalty-projection Eddy Viscosity Algorithm for Stochastic Magnetohydrodynamic Flow Problems</title><source>SpringerLink Journals</source><creator>Mohebujjaman, Muhammad ; Miranda, Julian ; Mahbub, Md. Abdullah Al ; Xiao, Mengying</creator><creatorcontrib>Mohebujjaman, Muhammad ; Miranda, Julian ; Mahbub, Md. Abdullah Al ; Xiao, Mengying</creatorcontrib><description>We propose, analyze, and test a penalty projection-based robust efficient and accurate algorithm for the Uncertainty Quantification (UQ) of the time-dependent Magnetohydrodynamic (MHD) flow problems in convection-dominated regimes. The algorithm uses the Elsässer variables formulation and discrete Hodge decomposition to decouple the stochastic MHD system into four sub-problems (at each time-step for each realization) which are much easier to solve than solving the coupled saddle point problems. Each of the sub-problems is designed in a sophisticated way so that at each time-step the system matrix remains the same for all the realizations but with different right-hand-side vectors which allows saving a huge amount of computer memory and computational time. Moreover, the scheme is equipped with Ensemble Eddy Viscosity (EEV) and grad-div stabilization terms. The unconditional stability with respect to the time-step size of the algorithm is proven rigorously. We prove the proposed scheme converges to an equivalent non-projection-based coupled MHD scheme for large grad-div stabilization parameter values. We examine how Stochastic Collocation Methods (SCMs) can be combined with the proposed penalty projection UQ algorithm. Finally, a series of numerical experiments are given which verify the predicted convergence rates, show the algorithm’s performance on benchmark channel flow over a rectangular step, a regularized lid-driven cavity problem with high random Reynolds number and high random magnetic Reynolds number, and the impact of the EEV stabilization in the MHD UQ algorithm.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-024-02633-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Boundary conditions ; Channel flow ; Collocation methods ; Computational Mathematics and Numerical Analysis ; Computing time ; Eddy viscosity ; Fluid dynamics ; Fluid flow ; Lagrange multiplier ; Magnetic fields ; Magnetohydrodynamic flow ; Magnetohydrodynamics ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical functions ; Mathematics ; Mathematics and Statistics ; Random variables ; Reynolds number ; Saddle points ; Stabilization ; Theoretical ; Time dependence ; Velocity ; Viscosity ; Vortices</subject><ispartof>Journal of scientific computing, 2024-10, Vol.101 (1), p.2, Article 2</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-594cf4dd607dd609a186785ff480e89748b50169b175e06173814a7e00d1b93e3</cites><orcidid>0000-0003-4278-7078</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-024-02633-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10915-024-02633-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Mohebujjaman, Muhammad</creatorcontrib><creatorcontrib>Miranda, Julian</creatorcontrib><creatorcontrib>Mahbub, Md. Abdullah Al</creatorcontrib><creatorcontrib>Xiao, Mengying</creatorcontrib><title>An Efficient and Accurate Penalty-projection Eddy Viscosity Algorithm for Stochastic Magnetohydrodynamic Flow Problems</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>We propose, analyze, and test a penalty projection-based robust efficient and accurate algorithm for the Uncertainty Quantification (UQ) of the time-dependent Magnetohydrodynamic (MHD) flow problems in convection-dominated regimes. The algorithm uses the Elsässer variables formulation and discrete Hodge decomposition to decouple the stochastic MHD system into four sub-problems (at each time-step for each realization) which are much easier to solve than solving the coupled saddle point problems. Each of the sub-problems is designed in a sophisticated way so that at each time-step the system matrix remains the same for all the realizations but with different right-hand-side vectors which allows saving a huge amount of computer memory and computational time. Moreover, the scheme is equipped with Ensemble Eddy Viscosity (EEV) and grad-div stabilization terms. The unconditional stability with respect to the time-step size of the algorithm is proven rigorously. We prove the proposed scheme converges to an equivalent non-projection-based coupled MHD scheme for large grad-div stabilization parameter values. We examine how Stochastic Collocation Methods (SCMs) can be combined with the proposed penalty projection UQ algorithm. Finally, a series of numerical experiments are given which verify the predicted convergence rates, show the algorithm’s performance on benchmark channel flow over a rectangular step, a regularized lid-driven cavity problem with high random Reynolds number and high random magnetic Reynolds number, and the impact of the EEV stabilization in the MHD UQ algorithm.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Boundary conditions</subject><subject>Channel flow</subject><subject>Collocation methods</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computing time</subject><subject>Eddy viscosity</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Lagrange multiplier</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamic flow</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Random variables</subject><subject>Reynolds number</subject><subject>Saddle points</subject><subject>Stabilization</subject><subject>Theoretical</subject><subject>Time dependence</subject><subject>Velocity</subject><subject>Viscosity</subject><subject>Vortices</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPA8-pkk90kx1JaFSoW_HMN2Wy23bLd1CRV9tubWsGbh5mB4b0H74fQNYFbAsDvAgFJigxylqakNBtO0IgUnGa8lOQUjUCIIuOMs3N0EcIGAKSQ-Qh9Tno8a5rWtLaPWPc1nhiz9zpavLS97uKQ7bzbWBNbl5R1PeD3NhgX2jjgSbdyvo3rLW6cxy_RmbUOsTX4Sa96G916qL2rh15v02_euS-89K7q7DZcorNGd8Fe_d4xepvPXqcP2eL5_nE6WWQmB4hZIZlpWF2XwA9LaiJKLoqmYQKskJyJqgBSyorwwkJJOBWEaW4BalJJaukY3RxzU4mPvQ1Rbdzep15BUZB5kee0ZEmVH1XGuxC8bdTOt1vtB0VAHfiqI1-V-KofvmpIJno0hSTuV9b_Rf_j-gZlzH8_</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Mohebujjaman, Muhammad</creator><creator>Miranda, Julian</creator><creator>Mahbub, Md. Abdullah Al</creator><creator>Xiao, Mengying</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-4278-7078</orcidid></search><sort><creationdate>20241001</creationdate><title>An Efficient and Accurate Penalty-projection Eddy Viscosity Algorithm for Stochastic Magnetohydrodynamic Flow Problems</title><author>Mohebujjaman, Muhammad ; Miranda, Julian ; Mahbub, Md. Abdullah Al ; Xiao, Mengying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-594cf4dd607dd609a186785ff480e89748b50169b175e06173814a7e00d1b93e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Boundary conditions</topic><topic>Channel flow</topic><topic>Collocation methods</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computing time</topic><topic>Eddy viscosity</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Lagrange multiplier</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamic flow</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Random variables</topic><topic>Reynolds number</topic><topic>Saddle points</topic><topic>Stabilization</topic><topic>Theoretical</topic><topic>Time dependence</topic><topic>Velocity</topic><topic>Viscosity</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohebujjaman, Muhammad</creatorcontrib><creatorcontrib>Miranda, Julian</creatorcontrib><creatorcontrib>Mahbub, Md. Abdullah Al</creatorcontrib><creatorcontrib>Xiao, Mengying</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohebujjaman, Muhammad</au><au>Miranda, Julian</au><au>Mahbub, Md. Abdullah Al</au><au>Xiao, Mengying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient and Accurate Penalty-projection Eddy Viscosity Algorithm for Stochastic Magnetohydrodynamic Flow Problems</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>101</volume><issue>1</issue><spage>2</spage><pages>2-</pages><artnum>2</artnum><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>We propose, analyze, and test a penalty projection-based robust efficient and accurate algorithm for the Uncertainty Quantification (UQ) of the time-dependent Magnetohydrodynamic (MHD) flow problems in convection-dominated regimes. The algorithm uses the Elsässer variables formulation and discrete Hodge decomposition to decouple the stochastic MHD system into four sub-problems (at each time-step for each realization) which are much easier to solve than solving the coupled saddle point problems. Each of the sub-problems is designed in a sophisticated way so that at each time-step the system matrix remains the same for all the realizations but with different right-hand-side vectors which allows saving a huge amount of computer memory and computational time. Moreover, the scheme is equipped with Ensemble Eddy Viscosity (EEV) and grad-div stabilization terms. The unconditional stability with respect to the time-step size of the algorithm is proven rigorously. We prove the proposed scheme converges to an equivalent non-projection-based coupled MHD scheme for large grad-div stabilization parameter values. We examine how Stochastic Collocation Methods (SCMs) can be combined with the proposed penalty projection UQ algorithm. Finally, a series of numerical experiments are given which verify the predicted convergence rates, show the algorithm’s performance on benchmark channel flow over a rectangular step, a regularized lid-driven cavity problem with high random Reynolds number and high random magnetic Reynolds number, and the impact of the EEV stabilization in the MHD UQ algorithm.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-024-02633-y</doi><orcidid>https://orcid.org/0000-0003-4278-7078</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2024-10, Vol.101 (1), p.2, Article 2
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_journals_3092522364
source SpringerLink Journals
subjects Accuracy
Algorithms
Boundary conditions
Channel flow
Collocation methods
Computational Mathematics and Numerical Analysis
Computing time
Eddy viscosity
Fluid dynamics
Fluid flow
Lagrange multiplier
Magnetic fields
Magnetohydrodynamic flow
Magnetohydrodynamics
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical functions
Mathematics
Mathematics and Statistics
Random variables
Reynolds number
Saddle points
Stabilization
Theoretical
Time dependence
Velocity
Viscosity
Vortices
title An Efficient and Accurate Penalty-projection Eddy Viscosity Algorithm for Stochastic Magnetohydrodynamic Flow Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A49%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20and%20Accurate%20Penalty-projection%20Eddy%20Viscosity%20Algorithm%20for%20Stochastic%20Magnetohydrodynamic%20Flow%20Problems&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Mohebujjaman,%20Muhammad&rft.date=2024-10-01&rft.volume=101&rft.issue=1&rft.spage=2&rft.pages=2-&rft.artnum=2&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-024-02633-y&rft_dat=%3Cproquest_cross%3E3092522364%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092522364&rft_id=info:pmid/&rfr_iscdi=true