Probabilistic analysis of a disturbed SIQP-SI model of mosquito-borne diseases with human quarantine strategy and independent Poisson jumps

In this paper, we propose a new mathematical model describing the dynamics of mosquito-borne epidemics. The main novelties of the proposed model in comparison to the previous literature are twofold. On the one hand, the inclusion of the quarantine control measure applied to the human population and,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Modeling earth systems and environment 2024-08, Vol.10 (4), p.4695-4715
Hauptverfasser: Sabbar, Yassine, Mehdaoui, Mohamed, Tilioua, Mouhcine, Nisar, Kottakkaran Sooppy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4715
container_issue 4
container_start_page 4695
container_title Modeling earth systems and environment
container_volume 10
creator Sabbar, Yassine
Mehdaoui, Mohamed
Tilioua, Mouhcine
Nisar, Kottakkaran Sooppy
description In this paper, we propose a new mathematical model describing the dynamics of mosquito-borne epidemics. The main novelties of the proposed model in comparison to the previous literature are twofold. On the one hand, the inclusion of the quarantine control measure applied to the human population and, on the other hand, the incorporation of the impact of environmental variations. The resulting model is governed by two blocks of Ito–Lévy coupled stochastic differential equations driven by Gaussian noise and six independent compensated Poisson processes. Based on the Lyapunov approach and the stopping time method, we first address the well-posedness of the proposed model. Then, by means of stochastic computational techniques, we establish certain asymptotic properties pertaining to the extinction and persistence in the mean of the infected component of the solution. Finally, we provide the outcome of some numerical experiments, to corroborate our theoretical results and highlight the influence of the quarantine measure and the discontinuous environmental noise on the infectious-disease dynamics.
doi_str_mv 10.1007/s40808-024-02018-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3092503943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092503943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-ec17c4f79f42761b0de73bf7fd69854c48760d6bdeb89bb33e5a8a085699f7d13</originalsourceid><addsrcrecordid>eNp9UF1LwzAULaLgmP4BnwI-V2-aLmkfRfwYDJxMn0PSpJqxNltuivQ3-KfNnOibD_eDe885cE6WXVC4ogDiGkuooMqhKFMBrfLxKJsUjLOcF5Qe_-7ATrNzxDUAUF5wXteT7HMZvFbabRxG1xDVq82IDolviSImHYegrSGr-fMyX81J543d7J-dx93gos-1D73dI61Ci-TDxXfyPnSqJ7tBBdVHl94Yg4r2bUz6hrje2K1NrY9k6R2i78l66LZ4lp20aoP2_GdOs9f7u5fbx3zx9DC_vVnkTSEg5rahoilbUbdlITjVYKxguhWt4XU1K5uyEhwM18bqqtaaMTtTlYJqlgy3wlA2zS4Putvgd4PFKNd-CMk5SgZ1MQNWlyyhigOqCR4x2FZug-tUGCUFuc9dHnKXKXf5nbscE4kdSJjA_ZsNf9L_sL4A6eeI-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092503943</pqid></control><display><type>article</type><title>Probabilistic analysis of a disturbed SIQP-SI model of mosquito-borne diseases with human quarantine strategy and independent Poisson jumps</title><source>Springer Nature - Complete Springer Journals</source><creator>Sabbar, Yassine ; Mehdaoui, Mohamed ; Tilioua, Mouhcine ; Nisar, Kottakkaran Sooppy</creator><creatorcontrib>Sabbar, Yassine ; Mehdaoui, Mohamed ; Tilioua, Mouhcine ; Nisar, Kottakkaran Sooppy</creatorcontrib><description>In this paper, we propose a new mathematical model describing the dynamics of mosquito-borne epidemics. The main novelties of the proposed model in comparison to the previous literature are twofold. On the one hand, the inclusion of the quarantine control measure applied to the human population and, on the other hand, the incorporation of the impact of environmental variations. The resulting model is governed by two blocks of Ito–Lévy coupled stochastic differential equations driven by Gaussian noise and six independent compensated Poisson processes. Based on the Lyapunov approach and the stopping time method, we first address the well-posedness of the proposed model. Then, by means of stochastic computational techniques, we establish certain asymptotic properties pertaining to the extinction and persistence in the mean of the infected component of the solution. Finally, we provide the outcome of some numerical experiments, to corroborate our theoretical results and highlight the influence of the quarantine measure and the discontinuous environmental noise on the infectious-disease dynamics.</description><identifier>ISSN: 2363-6203</identifier><identifier>EISSN: 2363-6211</identifier><identifier>DOI: 10.1007/s40808-024-02018-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Aquatic insects ; Asymptotic methods ; Asymptotic properties ; Background noise ; Chemistry and Earth Sciences ; Computer Science ; Differential equations ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Ecosystems ; Environment ; Environmental impact ; Gaussian process ; Human populations ; Math. Appl. in Environmental Science ; Mathematical Applications in the Physical Sciences ; Mathematical models ; Mosquitoes ; Noise measurement ; Original Article ; Physics ; Probabilistic analysis ; Quarantine ; Random noise ; Statistics for Engineering ; Vector-borne diseases</subject><ispartof>Modeling earth systems and environment, 2024-08, Vol.10 (4), p.4695-4715</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-ec17c4f79f42761b0de73bf7fd69854c48760d6bdeb89bb33e5a8a085699f7d13</cites><orcidid>0000-0001-5769-4320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40808-024-02018-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40808-024-02018-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Sabbar, Yassine</creatorcontrib><creatorcontrib>Mehdaoui, Mohamed</creatorcontrib><creatorcontrib>Tilioua, Mouhcine</creatorcontrib><creatorcontrib>Nisar, Kottakkaran Sooppy</creatorcontrib><title>Probabilistic analysis of a disturbed SIQP-SI model of mosquito-borne diseases with human quarantine strategy and independent Poisson jumps</title><title>Modeling earth systems and environment</title><addtitle>Model. Earth Syst. Environ</addtitle><description>In this paper, we propose a new mathematical model describing the dynamics of mosquito-borne epidemics. The main novelties of the proposed model in comparison to the previous literature are twofold. On the one hand, the inclusion of the quarantine control measure applied to the human population and, on the other hand, the incorporation of the impact of environmental variations. The resulting model is governed by two blocks of Ito–Lévy coupled stochastic differential equations driven by Gaussian noise and six independent compensated Poisson processes. Based on the Lyapunov approach and the stopping time method, we first address the well-posedness of the proposed model. Then, by means of stochastic computational techniques, we establish certain asymptotic properties pertaining to the extinction and persistence in the mean of the infected component of the solution. Finally, we provide the outcome of some numerical experiments, to corroborate our theoretical results and highlight the influence of the quarantine measure and the discontinuous environmental noise on the infectious-disease dynamics.</description><subject>Aquatic insects</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Background noise</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Differential equations</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Ecosystems</subject><subject>Environment</subject><subject>Environmental impact</subject><subject>Gaussian process</subject><subject>Human populations</subject><subject>Math. Appl. in Environmental Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematical models</subject><subject>Mosquitoes</subject><subject>Noise measurement</subject><subject>Original Article</subject><subject>Physics</subject><subject>Probabilistic analysis</subject><subject>Quarantine</subject><subject>Random noise</subject><subject>Statistics for Engineering</subject><subject>Vector-borne diseases</subject><issn>2363-6203</issn><issn>2363-6211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UF1LwzAULaLgmP4BnwI-V2-aLmkfRfwYDJxMn0PSpJqxNltuivQ3-KfNnOibD_eDe885cE6WXVC4ogDiGkuooMqhKFMBrfLxKJsUjLOcF5Qe_-7ATrNzxDUAUF5wXteT7HMZvFbabRxG1xDVq82IDolviSImHYegrSGr-fMyX81J543d7J-dx93gos-1D73dI61Ci-TDxXfyPnSqJ7tBBdVHl94Yg4r2bUz6hrje2K1NrY9k6R2i78l66LZ4lp20aoP2_GdOs9f7u5fbx3zx9DC_vVnkTSEg5rahoilbUbdlITjVYKxguhWt4XU1K5uyEhwM18bqqtaaMTtTlYJqlgy3wlA2zS4Putvgd4PFKNd-CMk5SgZ1MQNWlyyhigOqCR4x2FZug-tUGCUFuc9dHnKXKXf5nbscE4kdSJjA_ZsNf9L_sL4A6eeI-g</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Sabbar, Yassine</creator><creator>Mehdaoui, Mohamed</creator><creator>Tilioua, Mouhcine</creator><creator>Nisar, Kottakkaran Sooppy</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid></search><sort><creationdate>20240801</creationdate><title>Probabilistic analysis of a disturbed SIQP-SI model of mosquito-borne diseases with human quarantine strategy and independent Poisson jumps</title><author>Sabbar, Yassine ; Mehdaoui, Mohamed ; Tilioua, Mouhcine ; Nisar, Kottakkaran Sooppy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-ec17c4f79f42761b0de73bf7fd69854c48760d6bdeb89bb33e5a8a085699f7d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aquatic insects</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Background noise</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Differential equations</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Ecosystems</topic><topic>Environment</topic><topic>Environmental impact</topic><topic>Gaussian process</topic><topic>Human populations</topic><topic>Math. Appl. in Environmental Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematical models</topic><topic>Mosquitoes</topic><topic>Noise measurement</topic><topic>Original Article</topic><topic>Physics</topic><topic>Probabilistic analysis</topic><topic>Quarantine</topic><topic>Random noise</topic><topic>Statistics for Engineering</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabbar, Yassine</creatorcontrib><creatorcontrib>Mehdaoui, Mohamed</creatorcontrib><creatorcontrib>Tilioua, Mouhcine</creatorcontrib><creatorcontrib>Nisar, Kottakkaran Sooppy</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Modeling earth systems and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabbar, Yassine</au><au>Mehdaoui, Mohamed</au><au>Tilioua, Mouhcine</au><au>Nisar, Kottakkaran Sooppy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic analysis of a disturbed SIQP-SI model of mosquito-borne diseases with human quarantine strategy and independent Poisson jumps</atitle><jtitle>Modeling earth systems and environment</jtitle><stitle>Model. Earth Syst. Environ</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>10</volume><issue>4</issue><spage>4695</spage><epage>4715</epage><pages>4695-4715</pages><issn>2363-6203</issn><eissn>2363-6211</eissn><abstract>In this paper, we propose a new mathematical model describing the dynamics of mosquito-borne epidemics. The main novelties of the proposed model in comparison to the previous literature are twofold. On the one hand, the inclusion of the quarantine control measure applied to the human population and, on the other hand, the incorporation of the impact of environmental variations. The resulting model is governed by two blocks of Ito–Lévy coupled stochastic differential equations driven by Gaussian noise and six independent compensated Poisson processes. Based on the Lyapunov approach and the stopping time method, we first address the well-posedness of the proposed model. Then, by means of stochastic computational techniques, we establish certain asymptotic properties pertaining to the extinction and persistence in the mean of the infected component of the solution. Finally, we provide the outcome of some numerical experiments, to corroborate our theoretical results and highlight the influence of the quarantine measure and the discontinuous environmental noise on the infectious-disease dynamics.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40808-024-02018-y</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2363-6203
ispartof Modeling earth systems and environment, 2024-08, Vol.10 (4), p.4695-4715
issn 2363-6203
2363-6211
language eng
recordid cdi_proquest_journals_3092503943
source Springer Nature - Complete Springer Journals
subjects Aquatic insects
Asymptotic methods
Asymptotic properties
Background noise
Chemistry and Earth Sciences
Computer Science
Differential equations
Earth and Environmental Science
Earth Sciences
Earth System Sciences
Ecosystems
Environment
Environmental impact
Gaussian process
Human populations
Math. Appl. in Environmental Science
Mathematical Applications in the Physical Sciences
Mathematical models
Mosquitoes
Noise measurement
Original Article
Physics
Probabilistic analysis
Quarantine
Random noise
Statistics for Engineering
Vector-borne diseases
title Probabilistic analysis of a disturbed SIQP-SI model of mosquito-borne diseases with human quarantine strategy and independent Poisson jumps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A32%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20analysis%20of%20a%20disturbed%20SIQP-SI%20model%20of%20mosquito-borne%20diseases%20with%20human%20quarantine%20strategy%20and%20independent%20Poisson%20jumps&rft.jtitle=Modeling%20earth%20systems%20and%20environment&rft.au=Sabbar,%20Yassine&rft.date=2024-08-01&rft.volume=10&rft.issue=4&rft.spage=4695&rft.epage=4715&rft.pages=4695-4715&rft.issn=2363-6203&rft.eissn=2363-6211&rft_id=info:doi/10.1007/s40808-024-02018-y&rft_dat=%3Cproquest_cross%3E3092503943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092503943&rft_id=info:pmid/&rfr_iscdi=true