Probabilistic analysis of a disturbed SIQP-SI model of mosquito-borne diseases with human quarantine strategy and independent Poisson jumps
In this paper, we propose a new mathematical model describing the dynamics of mosquito-borne epidemics. The main novelties of the proposed model in comparison to the previous literature are twofold. On the one hand, the inclusion of the quarantine control measure applied to the human population and,...
Gespeichert in:
Veröffentlicht in: | Modeling earth systems and environment 2024-08, Vol.10 (4), p.4695-4715 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4715 |
---|---|
container_issue | 4 |
container_start_page | 4695 |
container_title | Modeling earth systems and environment |
container_volume | 10 |
creator | Sabbar, Yassine Mehdaoui, Mohamed Tilioua, Mouhcine Nisar, Kottakkaran Sooppy |
description | In this paper, we propose a new mathematical model describing the dynamics of mosquito-borne epidemics. The main novelties of the proposed model in comparison to the previous literature are twofold. On the one hand, the inclusion of the quarantine control measure applied to the human population and, on the other hand, the incorporation of the impact of environmental variations. The resulting model is governed by two blocks of Ito–Lévy coupled stochastic differential equations driven by Gaussian noise and six independent compensated Poisson processes. Based on the Lyapunov approach and the stopping time method, we first address the well-posedness of the proposed model. Then, by means of stochastic computational techniques, we establish certain asymptotic properties pertaining to the extinction and persistence in the mean of the infected component of the solution. Finally, we provide the outcome of some numerical experiments, to corroborate our theoretical results and highlight the influence of the quarantine measure and the discontinuous environmental noise on the infectious-disease dynamics. |
doi_str_mv | 10.1007/s40808-024-02018-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3092503943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092503943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-ec17c4f79f42761b0de73bf7fd69854c48760d6bdeb89bb33e5a8a085699f7d13</originalsourceid><addsrcrecordid>eNp9UF1LwzAULaLgmP4BnwI-V2-aLmkfRfwYDJxMn0PSpJqxNltuivQ3-KfNnOibD_eDe885cE6WXVC4ogDiGkuooMqhKFMBrfLxKJsUjLOcF5Qe_-7ATrNzxDUAUF5wXteT7HMZvFbabRxG1xDVq82IDolviSImHYegrSGr-fMyX81J543d7J-dx93gos-1D73dI61Ci-TDxXfyPnSqJ7tBBdVHl94Yg4r2bUz6hrje2K1NrY9k6R2i78l66LZ4lp20aoP2_GdOs9f7u5fbx3zx9DC_vVnkTSEg5rahoilbUbdlITjVYKxguhWt4XU1K5uyEhwM18bqqtaaMTtTlYJqlgy3wlA2zS4Putvgd4PFKNd-CMk5SgZ1MQNWlyyhigOqCR4x2FZug-tUGCUFuc9dHnKXKXf5nbscE4kdSJjA_ZsNf9L_sL4A6eeI-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092503943</pqid></control><display><type>article</type><title>Probabilistic analysis of a disturbed SIQP-SI model of mosquito-borne diseases with human quarantine strategy and independent Poisson jumps</title><source>Springer Nature - Complete Springer Journals</source><creator>Sabbar, Yassine ; Mehdaoui, Mohamed ; Tilioua, Mouhcine ; Nisar, Kottakkaran Sooppy</creator><creatorcontrib>Sabbar, Yassine ; Mehdaoui, Mohamed ; Tilioua, Mouhcine ; Nisar, Kottakkaran Sooppy</creatorcontrib><description>In this paper, we propose a new mathematical model describing the dynamics of mosquito-borne epidemics. The main novelties of the proposed model in comparison to the previous literature are twofold. On the one hand, the inclusion of the quarantine control measure applied to the human population and, on the other hand, the incorporation of the impact of environmental variations. The resulting model is governed by two blocks of Ito–Lévy coupled stochastic differential equations driven by Gaussian noise and six independent compensated Poisson processes. Based on the Lyapunov approach and the stopping time method, we first address the well-posedness of the proposed model. Then, by means of stochastic computational techniques, we establish certain asymptotic properties pertaining to the extinction and persistence in the mean of the infected component of the solution. Finally, we provide the outcome of some numerical experiments, to corroborate our theoretical results and highlight the influence of the quarantine measure and the discontinuous environmental noise on the infectious-disease dynamics.</description><identifier>ISSN: 2363-6203</identifier><identifier>EISSN: 2363-6211</identifier><identifier>DOI: 10.1007/s40808-024-02018-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Aquatic insects ; Asymptotic methods ; Asymptotic properties ; Background noise ; Chemistry and Earth Sciences ; Computer Science ; Differential equations ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Ecosystems ; Environment ; Environmental impact ; Gaussian process ; Human populations ; Math. Appl. in Environmental Science ; Mathematical Applications in the Physical Sciences ; Mathematical models ; Mosquitoes ; Noise measurement ; Original Article ; Physics ; Probabilistic analysis ; Quarantine ; Random noise ; Statistics for Engineering ; Vector-borne diseases</subject><ispartof>Modeling earth systems and environment, 2024-08, Vol.10 (4), p.4695-4715</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-ec17c4f79f42761b0de73bf7fd69854c48760d6bdeb89bb33e5a8a085699f7d13</cites><orcidid>0000-0001-5769-4320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40808-024-02018-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40808-024-02018-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Sabbar, Yassine</creatorcontrib><creatorcontrib>Mehdaoui, Mohamed</creatorcontrib><creatorcontrib>Tilioua, Mouhcine</creatorcontrib><creatorcontrib>Nisar, Kottakkaran Sooppy</creatorcontrib><title>Probabilistic analysis of a disturbed SIQP-SI model of mosquito-borne diseases with human quarantine strategy and independent Poisson jumps</title><title>Modeling earth systems and environment</title><addtitle>Model. Earth Syst. Environ</addtitle><description>In this paper, we propose a new mathematical model describing the dynamics of mosquito-borne epidemics. The main novelties of the proposed model in comparison to the previous literature are twofold. On the one hand, the inclusion of the quarantine control measure applied to the human population and, on the other hand, the incorporation of the impact of environmental variations. The resulting model is governed by two blocks of Ito–Lévy coupled stochastic differential equations driven by Gaussian noise and six independent compensated Poisson processes. Based on the Lyapunov approach and the stopping time method, we first address the well-posedness of the proposed model. Then, by means of stochastic computational techniques, we establish certain asymptotic properties pertaining to the extinction and persistence in the mean of the infected component of the solution. Finally, we provide the outcome of some numerical experiments, to corroborate our theoretical results and highlight the influence of the quarantine measure and the discontinuous environmental noise on the infectious-disease dynamics.</description><subject>Aquatic insects</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Background noise</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Differential equations</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Ecosystems</subject><subject>Environment</subject><subject>Environmental impact</subject><subject>Gaussian process</subject><subject>Human populations</subject><subject>Math. Appl. in Environmental Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematical models</subject><subject>Mosquitoes</subject><subject>Noise measurement</subject><subject>Original Article</subject><subject>Physics</subject><subject>Probabilistic analysis</subject><subject>Quarantine</subject><subject>Random noise</subject><subject>Statistics for Engineering</subject><subject>Vector-borne diseases</subject><issn>2363-6203</issn><issn>2363-6211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UF1LwzAULaLgmP4BnwI-V2-aLmkfRfwYDJxMn0PSpJqxNltuivQ3-KfNnOibD_eDe885cE6WXVC4ogDiGkuooMqhKFMBrfLxKJsUjLOcF5Qe_-7ATrNzxDUAUF5wXteT7HMZvFbabRxG1xDVq82IDolviSImHYegrSGr-fMyX81J543d7J-dx93gos-1D73dI61Ci-TDxXfyPnSqJ7tBBdVHl94Yg4r2bUz6hrje2K1NrY9k6R2i78l66LZ4lp20aoP2_GdOs9f7u5fbx3zx9DC_vVnkTSEg5rahoilbUbdlITjVYKxguhWt4XU1K5uyEhwM18bqqtaaMTtTlYJqlgy3wlA2zS4Putvgd4PFKNd-CMk5SgZ1MQNWlyyhigOqCR4x2FZug-tUGCUFuc9dHnKXKXf5nbscE4kdSJjA_ZsNf9L_sL4A6eeI-g</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Sabbar, Yassine</creator><creator>Mehdaoui, Mohamed</creator><creator>Tilioua, Mouhcine</creator><creator>Nisar, Kottakkaran Sooppy</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid></search><sort><creationdate>20240801</creationdate><title>Probabilistic analysis of a disturbed SIQP-SI model of mosquito-borne diseases with human quarantine strategy and independent Poisson jumps</title><author>Sabbar, Yassine ; Mehdaoui, Mohamed ; Tilioua, Mouhcine ; Nisar, Kottakkaran Sooppy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-ec17c4f79f42761b0de73bf7fd69854c48760d6bdeb89bb33e5a8a085699f7d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aquatic insects</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Background noise</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Differential equations</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Ecosystems</topic><topic>Environment</topic><topic>Environmental impact</topic><topic>Gaussian process</topic><topic>Human populations</topic><topic>Math. Appl. in Environmental Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematical models</topic><topic>Mosquitoes</topic><topic>Noise measurement</topic><topic>Original Article</topic><topic>Physics</topic><topic>Probabilistic analysis</topic><topic>Quarantine</topic><topic>Random noise</topic><topic>Statistics for Engineering</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabbar, Yassine</creatorcontrib><creatorcontrib>Mehdaoui, Mohamed</creatorcontrib><creatorcontrib>Tilioua, Mouhcine</creatorcontrib><creatorcontrib>Nisar, Kottakkaran Sooppy</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Modeling earth systems and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabbar, Yassine</au><au>Mehdaoui, Mohamed</au><au>Tilioua, Mouhcine</au><au>Nisar, Kottakkaran Sooppy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic analysis of a disturbed SIQP-SI model of mosquito-borne diseases with human quarantine strategy and independent Poisson jumps</atitle><jtitle>Modeling earth systems and environment</jtitle><stitle>Model. Earth Syst. Environ</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>10</volume><issue>4</issue><spage>4695</spage><epage>4715</epage><pages>4695-4715</pages><issn>2363-6203</issn><eissn>2363-6211</eissn><abstract>In this paper, we propose a new mathematical model describing the dynamics of mosquito-borne epidemics. The main novelties of the proposed model in comparison to the previous literature are twofold. On the one hand, the inclusion of the quarantine control measure applied to the human population and, on the other hand, the incorporation of the impact of environmental variations. The resulting model is governed by two blocks of Ito–Lévy coupled stochastic differential equations driven by Gaussian noise and six independent compensated Poisson processes. Based on the Lyapunov approach and the stopping time method, we first address the well-posedness of the proposed model. Then, by means of stochastic computational techniques, we establish certain asymptotic properties pertaining to the extinction and persistence in the mean of the infected component of the solution. Finally, we provide the outcome of some numerical experiments, to corroborate our theoretical results and highlight the influence of the quarantine measure and the discontinuous environmental noise on the infectious-disease dynamics.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40808-024-02018-y</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2363-6203 |
ispartof | Modeling earth systems and environment, 2024-08, Vol.10 (4), p.4695-4715 |
issn | 2363-6203 2363-6211 |
language | eng |
recordid | cdi_proquest_journals_3092503943 |
source | Springer Nature - Complete Springer Journals |
subjects | Aquatic insects Asymptotic methods Asymptotic properties Background noise Chemistry and Earth Sciences Computer Science Differential equations Earth and Environmental Science Earth Sciences Earth System Sciences Ecosystems Environment Environmental impact Gaussian process Human populations Math. Appl. in Environmental Science Mathematical Applications in the Physical Sciences Mathematical models Mosquitoes Noise measurement Original Article Physics Probabilistic analysis Quarantine Random noise Statistics for Engineering Vector-borne diseases |
title | Probabilistic analysis of a disturbed SIQP-SI model of mosquito-borne diseases with human quarantine strategy and independent Poisson jumps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A32%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20analysis%20of%20a%20disturbed%20SIQP-SI%20model%20of%20mosquito-borne%20diseases%20with%20human%20quarantine%20strategy%20and%20independent%20Poisson%20jumps&rft.jtitle=Modeling%20earth%20systems%20and%20environment&rft.au=Sabbar,%20Yassine&rft.date=2024-08-01&rft.volume=10&rft.issue=4&rft.spage=4695&rft.epage=4715&rft.pages=4695-4715&rft.issn=2363-6203&rft.eissn=2363-6211&rft_id=info:doi/10.1007/s40808-024-02018-y&rft_dat=%3Cproquest_cross%3E3092503943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092503943&rft_id=info:pmid/&rfr_iscdi=true |