Enhanced streamflow forecasting using attention-based neural network models: a comparative study in MOPEX basins
To mitigate the adverse effects of floods, hydrologists are increasingly turning to artificial intelligence methodologies to enhance streamflow forecasting capabilities. Drawing inspiration from the efficacy of the Long Short-Term Memory (LSTM) model in capturing temporal dynamics and dependencies w...
Gespeichert in:
Veröffentlicht in: | Modeling earth systems and environment 2024-08, Vol.10 (4), p.5717-5734 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5734 |
---|---|
container_issue | 4 |
container_start_page | 5717 |
container_title | Modeling earth systems and environment |
container_volume | 10 |
creator | Muhammad, Abdullahi Uwaisu Muazu, Tasiu Ying, Haihua Ba, Abdoul Fatakhou Tijjani, Sani Adam, Jibril Muhammad Bello, Aliyu Uthman Bala, Muhammad Muhammad Ali, Mosaad Ali Hussein Dabai, Umar Sani Umar Muhammad Mustapha Kumshe Yahaya, Muhammad Sabo |
description | To mitigate the adverse effects of floods, hydrologists are increasingly turning to artificial intelligence methodologies to enhance streamflow forecasting capabilities. Drawing inspiration from the efficacy of the Long Short-Term Memory (LSTM) model in capturing temporal dynamics and dependencies within data set, we have employed LSTM for predicting sequential flow rates utilizing collected data sets. Recognizing that not all data set contribute equally to accurate flood forecasts, it becomes imperative to discern and prioritize the relevant variables. Conventional LSTM models often fall short in effectively identifying and ranking informative factors. To overcome this limitation, we introduce an Attention LSTM (ALSTM) model tailored for streamflow forecasting, adept at identifying and capturing critical factors within the time series dataset. Leveraging data set sourced from the United States Geological Survey (USGS), our proposed model exhibits notable performance enhancements. By integrating an attention mechanism during the pre-processing stage, the ALSTM model showcases its ability to generate precise long-term forecasts across most of the basins. Utilizing a continuous 33-year streamflow data set (1970–2003), our proposed model surpasses conventional time series approaches in streamflow forecasting accuracy. |
doi_str_mv | 10.1007/s40808-024-02088-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3092502648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092502648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-59bc55c5922c4eb2937cc8b68d1fe5387055094910f8ae3ef213a797f05de80e3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxRdRULRfwFPA8-ok2ewm3qTUP1DRg4K3kGZn62qb1CRr6bc3taI3DzNvDu-9gV9RnFI4pwDNRaxAgiyBVXlAynKzVxwxXvOyZpTu_97AD4tRjG8AQGtW10odFauJezXOYktiCmiW3cKvSecDWhNT7-ZkiNttUkKXeu_KmYnZ7HAIZpElrX14J0vf4iJeEkOsX65MMKn_xNw4tBvSO3L_8Dh5ITnZu3hSHHRmEXH0o8fF8_XkaXxbTh9u7sZX09KyBlIp1MwKYYVizFY4Y4o31spZLVvaoeCyASFAVYpCJw1y7BjlplFNB6JFCciPi7Nd7yr4jwFj0m9-CC6_1BwUE8DqSmYX27ls8DEG7PQq9EsTNpqC3sLVO7g6w9XfcPUmh_guFLPZzTH8Vf-T-gKMmH5L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092502648</pqid></control><display><type>article</type><title>Enhanced streamflow forecasting using attention-based neural network models: a comparative study in MOPEX basins</title><source>Springer Nature - Complete Springer Journals</source><creator>Muhammad, Abdullahi Uwaisu ; Muazu, Tasiu ; Ying, Haihua ; Ba, Abdoul Fatakhou ; Tijjani, Sani ; Adam, Jibril Muhammad ; Bello, Aliyu Uthman ; Bala, Muhammad Muhammad ; Ali, Mosaad Ali Hussein ; Dabai, Umar Sani ; Umar Muhammad Mustapha Kumshe ; Yahaya, Muhammad Sabo</creator><creatorcontrib>Muhammad, Abdullahi Uwaisu ; Muazu, Tasiu ; Ying, Haihua ; Ba, Abdoul Fatakhou ; Tijjani, Sani ; Adam, Jibril Muhammad ; Bello, Aliyu Uthman ; Bala, Muhammad Muhammad ; Ali, Mosaad Ali Hussein ; Dabai, Umar Sani ; Umar Muhammad Mustapha Kumshe ; Yahaya, Muhammad Sabo</creatorcontrib><description>To mitigate the adverse effects of floods, hydrologists are increasingly turning to artificial intelligence methodologies to enhance streamflow forecasting capabilities. Drawing inspiration from the efficacy of the Long Short-Term Memory (LSTM) model in capturing temporal dynamics and dependencies within data set, we have employed LSTM for predicting sequential flow rates utilizing collected data sets. Recognizing that not all data set contribute equally to accurate flood forecasts, it becomes imperative to discern and prioritize the relevant variables. Conventional LSTM models often fall short in effectively identifying and ranking informative factors. To overcome this limitation, we introduce an Attention LSTM (ALSTM) model tailored for streamflow forecasting, adept at identifying and capturing critical factors within the time series dataset. Leveraging data set sourced from the United States Geological Survey (USGS), our proposed model exhibits notable performance enhancements. By integrating an attention mechanism during the pre-processing stage, the ALSTM model showcases its ability to generate precise long-term forecasts across most of the basins. Utilizing a continuous 33-year streamflow data set (1970–2003), our proposed model surpasses conventional time series approaches in streamflow forecasting accuracy.</description><identifier>ISSN: 2363-6203</identifier><identifier>EISSN: 2363-6211</identifier><identifier>DOI: 10.1007/s40808-024-02088-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Artificial intelligence ; Basins ; Chemistry and Earth Sciences ; Comparative analysis ; Comparative studies ; Computer Science ; Data collection ; Datasets ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Ecosystems ; Environment ; Flood forecasting ; Flood predictions ; Flow rates ; Geological surveys ; Hydrologic data ; Long short-term memory ; Math. Appl. in Environmental Science ; Mathematical Applications in the Physical Sciences ; Neural networks ; Original Article ; Physics ; Statistics for Engineering ; Stream discharge ; Stream flow ; Streamflow forecasting ; Time series</subject><ispartof>Modeling earth systems and environment, 2024-08, Vol.10 (4), p.5717-5734</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. corrected publication 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-59bc55c5922c4eb2937cc8b68d1fe5387055094910f8ae3ef213a797f05de80e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40808-024-02088-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40808-024-02088-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Muhammad, Abdullahi Uwaisu</creatorcontrib><creatorcontrib>Muazu, Tasiu</creatorcontrib><creatorcontrib>Ying, Haihua</creatorcontrib><creatorcontrib>Ba, Abdoul Fatakhou</creatorcontrib><creatorcontrib>Tijjani, Sani</creatorcontrib><creatorcontrib>Adam, Jibril Muhammad</creatorcontrib><creatorcontrib>Bello, Aliyu Uthman</creatorcontrib><creatorcontrib>Bala, Muhammad Muhammad</creatorcontrib><creatorcontrib>Ali, Mosaad Ali Hussein</creatorcontrib><creatorcontrib>Dabai, Umar Sani</creatorcontrib><creatorcontrib>Umar Muhammad Mustapha Kumshe</creatorcontrib><creatorcontrib>Yahaya, Muhammad Sabo</creatorcontrib><title>Enhanced streamflow forecasting using attention-based neural network models: a comparative study in MOPEX basins</title><title>Modeling earth systems and environment</title><addtitle>Model. Earth Syst. Environ</addtitle><description>To mitigate the adverse effects of floods, hydrologists are increasingly turning to artificial intelligence methodologies to enhance streamflow forecasting capabilities. Drawing inspiration from the efficacy of the Long Short-Term Memory (LSTM) model in capturing temporal dynamics and dependencies within data set, we have employed LSTM for predicting sequential flow rates utilizing collected data sets. Recognizing that not all data set contribute equally to accurate flood forecasts, it becomes imperative to discern and prioritize the relevant variables. Conventional LSTM models often fall short in effectively identifying and ranking informative factors. To overcome this limitation, we introduce an Attention LSTM (ALSTM) model tailored for streamflow forecasting, adept at identifying and capturing critical factors within the time series dataset. Leveraging data set sourced from the United States Geological Survey (USGS), our proposed model exhibits notable performance enhancements. By integrating an attention mechanism during the pre-processing stage, the ALSTM model showcases its ability to generate precise long-term forecasts across most of the basins. Utilizing a continuous 33-year streamflow data set (1970–2003), our proposed model surpasses conventional time series approaches in streamflow forecasting accuracy.</description><subject>Artificial intelligence</subject><subject>Basins</subject><subject>Chemistry and Earth Sciences</subject><subject>Comparative analysis</subject><subject>Comparative studies</subject><subject>Computer Science</subject><subject>Data collection</subject><subject>Datasets</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Ecosystems</subject><subject>Environment</subject><subject>Flood forecasting</subject><subject>Flood predictions</subject><subject>Flow rates</subject><subject>Geological surveys</subject><subject>Hydrologic data</subject><subject>Long short-term memory</subject><subject>Math. Appl. in Environmental Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Physics</subject><subject>Statistics for Engineering</subject><subject>Stream discharge</subject><subject>Stream flow</subject><subject>Streamflow forecasting</subject><subject>Time series</subject><issn>2363-6203</issn><issn>2363-6211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxRdRULRfwFPA8-ok2ewm3qTUP1DRg4K3kGZn62qb1CRr6bc3taI3DzNvDu-9gV9RnFI4pwDNRaxAgiyBVXlAynKzVxwxXvOyZpTu_97AD4tRjG8AQGtW10odFauJezXOYktiCmiW3cKvSecDWhNT7-ZkiNttUkKXeu_KmYnZ7HAIZpElrX14J0vf4iJeEkOsX65MMKn_xNw4tBvSO3L_8Dh5ITnZu3hSHHRmEXH0o8fF8_XkaXxbTh9u7sZX09KyBlIp1MwKYYVizFY4Y4o31spZLVvaoeCyASFAVYpCJw1y7BjlplFNB6JFCciPi7Nd7yr4jwFj0m9-CC6_1BwUE8DqSmYX27ls8DEG7PQq9EsTNpqC3sLVO7g6w9XfcPUmh_guFLPZzTH8Vf-T-gKMmH5L</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Muhammad, Abdullahi Uwaisu</creator><creator>Muazu, Tasiu</creator><creator>Ying, Haihua</creator><creator>Ba, Abdoul Fatakhou</creator><creator>Tijjani, Sani</creator><creator>Adam, Jibril Muhammad</creator><creator>Bello, Aliyu Uthman</creator><creator>Bala, Muhammad Muhammad</creator><creator>Ali, Mosaad Ali Hussein</creator><creator>Dabai, Umar Sani</creator><creator>Umar Muhammad Mustapha Kumshe</creator><creator>Yahaya, Muhammad Sabo</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20240801</creationdate><title>Enhanced streamflow forecasting using attention-based neural network models: a comparative study in MOPEX basins</title><author>Muhammad, Abdullahi Uwaisu ; Muazu, Tasiu ; Ying, Haihua ; Ba, Abdoul Fatakhou ; Tijjani, Sani ; Adam, Jibril Muhammad ; Bello, Aliyu Uthman ; Bala, Muhammad Muhammad ; Ali, Mosaad Ali Hussein ; Dabai, Umar Sani ; Umar Muhammad Mustapha Kumshe ; Yahaya, Muhammad Sabo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-59bc55c5922c4eb2937cc8b68d1fe5387055094910f8ae3ef213a797f05de80e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Basins</topic><topic>Chemistry and Earth Sciences</topic><topic>Comparative analysis</topic><topic>Comparative studies</topic><topic>Computer Science</topic><topic>Data collection</topic><topic>Datasets</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Ecosystems</topic><topic>Environment</topic><topic>Flood forecasting</topic><topic>Flood predictions</topic><topic>Flow rates</topic><topic>Geological surveys</topic><topic>Hydrologic data</topic><topic>Long short-term memory</topic><topic>Math. Appl. in Environmental Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Physics</topic><topic>Statistics for Engineering</topic><topic>Stream discharge</topic><topic>Stream flow</topic><topic>Streamflow forecasting</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muhammad, Abdullahi Uwaisu</creatorcontrib><creatorcontrib>Muazu, Tasiu</creatorcontrib><creatorcontrib>Ying, Haihua</creatorcontrib><creatorcontrib>Ba, Abdoul Fatakhou</creatorcontrib><creatorcontrib>Tijjani, Sani</creatorcontrib><creatorcontrib>Adam, Jibril Muhammad</creatorcontrib><creatorcontrib>Bello, Aliyu Uthman</creatorcontrib><creatorcontrib>Bala, Muhammad Muhammad</creatorcontrib><creatorcontrib>Ali, Mosaad Ali Hussein</creatorcontrib><creatorcontrib>Dabai, Umar Sani</creatorcontrib><creatorcontrib>Umar Muhammad Mustapha Kumshe</creatorcontrib><creatorcontrib>Yahaya, Muhammad Sabo</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Modeling earth systems and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muhammad, Abdullahi Uwaisu</au><au>Muazu, Tasiu</au><au>Ying, Haihua</au><au>Ba, Abdoul Fatakhou</au><au>Tijjani, Sani</au><au>Adam, Jibril Muhammad</au><au>Bello, Aliyu Uthman</au><au>Bala, Muhammad Muhammad</au><au>Ali, Mosaad Ali Hussein</au><au>Dabai, Umar Sani</au><au>Umar Muhammad Mustapha Kumshe</au><au>Yahaya, Muhammad Sabo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced streamflow forecasting using attention-based neural network models: a comparative study in MOPEX basins</atitle><jtitle>Modeling earth systems and environment</jtitle><stitle>Model. Earth Syst. Environ</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>10</volume><issue>4</issue><spage>5717</spage><epage>5734</epage><pages>5717-5734</pages><issn>2363-6203</issn><eissn>2363-6211</eissn><abstract>To mitigate the adverse effects of floods, hydrologists are increasingly turning to artificial intelligence methodologies to enhance streamflow forecasting capabilities. Drawing inspiration from the efficacy of the Long Short-Term Memory (LSTM) model in capturing temporal dynamics and dependencies within data set, we have employed LSTM for predicting sequential flow rates utilizing collected data sets. Recognizing that not all data set contribute equally to accurate flood forecasts, it becomes imperative to discern and prioritize the relevant variables. Conventional LSTM models often fall short in effectively identifying and ranking informative factors. To overcome this limitation, we introduce an Attention LSTM (ALSTM) model tailored for streamflow forecasting, adept at identifying and capturing critical factors within the time series dataset. Leveraging data set sourced from the United States Geological Survey (USGS), our proposed model exhibits notable performance enhancements. By integrating an attention mechanism during the pre-processing stage, the ALSTM model showcases its ability to generate precise long-term forecasts across most of the basins. Utilizing a continuous 33-year streamflow data set (1970–2003), our proposed model surpasses conventional time series approaches in streamflow forecasting accuracy.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40808-024-02088-y</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2363-6203 |
ispartof | Modeling earth systems and environment, 2024-08, Vol.10 (4), p.5717-5734 |
issn | 2363-6203 2363-6211 |
language | eng |
recordid | cdi_proquest_journals_3092502648 |
source | Springer Nature - Complete Springer Journals |
subjects | Artificial intelligence Basins Chemistry and Earth Sciences Comparative analysis Comparative studies Computer Science Data collection Datasets Earth and Environmental Science Earth Sciences Earth System Sciences Ecosystems Environment Flood forecasting Flood predictions Flow rates Geological surveys Hydrologic data Long short-term memory Math. Appl. in Environmental Science Mathematical Applications in the Physical Sciences Neural networks Original Article Physics Statistics for Engineering Stream discharge Stream flow Streamflow forecasting Time series |
title | Enhanced streamflow forecasting using attention-based neural network models: a comparative study in MOPEX basins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T13%3A59%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20streamflow%20forecasting%20using%20attention-based%20neural%20network%20models:%20a%20comparative%20study%20in%20MOPEX%20basins&rft.jtitle=Modeling%20earth%20systems%20and%20environment&rft.au=Muhammad,%20Abdullahi%20Uwaisu&rft.date=2024-08-01&rft.volume=10&rft.issue=4&rft.spage=5717&rft.epage=5734&rft.pages=5717-5734&rft.issn=2363-6203&rft.eissn=2363-6211&rft_id=info:doi/10.1007/s40808-024-02088-y&rft_dat=%3Cproquest_cross%3E3092502648%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092502648&rft_id=info:pmid/&rfr_iscdi=true |