Dynamic Resource Allocation with Quantum Error Detection

Quantum processing units (QPUs) are highly heterogeneous in terms of physical qubit performance. To add even more complexity, drift in quantum noise landscapes has been well-documented. This makes resource allocation a challenging problem whenever a quantum program must be mapped to hardware. As a s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Quinn Langfitt, Gonzales, Alvin, Gao, Joshua, Liu, Ji, Saleem, Zain H, Hardavellas, Nikos, Smith, Kaitlin N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Quinn Langfitt
Gonzales, Alvin
Gao, Joshua
Liu, Ji
Saleem, Zain H
Hardavellas, Nikos
Smith, Kaitlin N
description Quantum processing units (QPUs) are highly heterogeneous in terms of physical qubit performance. To add even more complexity, drift in quantum noise landscapes has been well-documented. This makes resource allocation a challenging problem whenever a quantum program must be mapped to hardware. As a solution, we propose a novel resource allocation framework that applies Pauli checks. Pauli checks have demonstrated their efficacy at error mitigation in prior work, and in this paper, we highlight their potential to infer the noise characteristics of a quantum system. Circuits with embedded Pauli checks can be executed on different regions of qubits, and the syndrome data created by error-detecting Pauli checks can be leveraged to guide quantum program outcomes toward regions that produce higher-fidelity final distributions. Using noisy simulation and a real QPU testbed, we show that dynamic quantum resource allocation with Pauli checks can outperform state-of-art mapping techniques, such as those that are noise-aware. Further, when applied toward the Quantum Approximate Optimization Algorithm, techniques guided by Pauli checks demonstrate the ability to increase circuit fidelity 11% on average, and up to 33%.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3092490451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092490451</sourcerecordid><originalsourceid>FETCH-proquest_journals_30924904513</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcKnMS8zNTFYISi3OLy1KTlVwzMnJT04syczPUyjPLMlQCCxNzCspzVVwLSrKL1JwSS1JTQZJ8jCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvgsoHl5QKl4YwNLIxNLAxNTQ2PiVAEAUco2Kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092490451</pqid></control><display><type>article</type><title>Dynamic Resource Allocation with Quantum Error Detection</title><source>Free E- Journals</source><creator>Quinn Langfitt ; Gonzales, Alvin ; Gao, Joshua ; Liu, Ji ; Saleem, Zain H ; Hardavellas, Nikos ; Smith, Kaitlin N</creator><creatorcontrib>Quinn Langfitt ; Gonzales, Alvin ; Gao, Joshua ; Liu, Ji ; Saleem, Zain H ; Hardavellas, Nikos ; Smith, Kaitlin N</creatorcontrib><description>Quantum processing units (QPUs) are highly heterogeneous in terms of physical qubit performance. To add even more complexity, drift in quantum noise landscapes has been well-documented. This makes resource allocation a challenging problem whenever a quantum program must be mapped to hardware. As a solution, we propose a novel resource allocation framework that applies Pauli checks. Pauli checks have demonstrated their efficacy at error mitigation in prior work, and in this paper, we highlight their potential to infer the noise characteristics of a quantum system. Circuits with embedded Pauli checks can be executed on different regions of qubits, and the syndrome data created by error-detecting Pauli checks can be leveraged to guide quantum program outcomes toward regions that produce higher-fidelity final distributions. Using noisy simulation and a real QPU testbed, we show that dynamic quantum resource allocation with Pauli checks can outperform state-of-art mapping techniques, such as those that are noise-aware. Further, when applied toward the Quantum Approximate Optimization Algorithm, techniques guided by Pauli checks demonstrate the ability to increase circuit fidelity 11% on average, and up to 33%.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Quantum theory</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Quinn Langfitt</creatorcontrib><creatorcontrib>Gonzales, Alvin</creatorcontrib><creatorcontrib>Gao, Joshua</creatorcontrib><creatorcontrib>Liu, Ji</creatorcontrib><creatorcontrib>Saleem, Zain H</creatorcontrib><creatorcontrib>Hardavellas, Nikos</creatorcontrib><creatorcontrib>Smith, Kaitlin N</creatorcontrib><title>Dynamic Resource Allocation with Quantum Error Detection</title><title>arXiv.org</title><description>Quantum processing units (QPUs) are highly heterogeneous in terms of physical qubit performance. To add even more complexity, drift in quantum noise landscapes has been well-documented. This makes resource allocation a challenging problem whenever a quantum program must be mapped to hardware. As a solution, we propose a novel resource allocation framework that applies Pauli checks. Pauli checks have demonstrated their efficacy at error mitigation in prior work, and in this paper, we highlight their potential to infer the noise characteristics of a quantum system. Circuits with embedded Pauli checks can be executed on different regions of qubits, and the syndrome data created by error-detecting Pauli checks can be leveraged to guide quantum program outcomes toward regions that produce higher-fidelity final distributions. Using noisy simulation and a real QPU testbed, we show that dynamic quantum resource allocation with Pauli checks can outperform state-of-art mapping techniques, such as those that are noise-aware. Further, when applied toward the Quantum Approximate Optimization Algorithm, techniques guided by Pauli checks demonstrate the ability to increase circuit fidelity 11% on average, and up to 33%.</description><subject>Quantum theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcKnMS8zNTFYISi3OLy1KTlVwzMnJT04syczPUyjPLMlQCCxNzCspzVVwLSrKL1JwSS1JTQZJ8jCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvgsoHl5QKl4YwNLIxNLAxNTQ2PiVAEAUco2Kg</recordid><startdate>20241212</startdate><enddate>20241212</enddate><creator>Quinn Langfitt</creator><creator>Gonzales, Alvin</creator><creator>Gao, Joshua</creator><creator>Liu, Ji</creator><creator>Saleem, Zain H</creator><creator>Hardavellas, Nikos</creator><creator>Smith, Kaitlin N</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241212</creationdate><title>Dynamic Resource Allocation with Quantum Error Detection</title><author>Quinn Langfitt ; Gonzales, Alvin ; Gao, Joshua ; Liu, Ji ; Saleem, Zain H ; Hardavellas, Nikos ; Smith, Kaitlin N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30924904513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Quantum theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Quinn Langfitt</creatorcontrib><creatorcontrib>Gonzales, Alvin</creatorcontrib><creatorcontrib>Gao, Joshua</creatorcontrib><creatorcontrib>Liu, Ji</creatorcontrib><creatorcontrib>Saleem, Zain H</creatorcontrib><creatorcontrib>Hardavellas, Nikos</creatorcontrib><creatorcontrib>Smith, Kaitlin N</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quinn Langfitt</au><au>Gonzales, Alvin</au><au>Gao, Joshua</au><au>Liu, Ji</au><au>Saleem, Zain H</au><au>Hardavellas, Nikos</au><au>Smith, Kaitlin N</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Dynamic Resource Allocation with Quantum Error Detection</atitle><jtitle>arXiv.org</jtitle><date>2024-12-12</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Quantum processing units (QPUs) are highly heterogeneous in terms of physical qubit performance. To add even more complexity, drift in quantum noise landscapes has been well-documented. This makes resource allocation a challenging problem whenever a quantum program must be mapped to hardware. As a solution, we propose a novel resource allocation framework that applies Pauli checks. Pauli checks have demonstrated their efficacy at error mitigation in prior work, and in this paper, we highlight their potential to infer the noise characteristics of a quantum system. Circuits with embedded Pauli checks can be executed on different regions of qubits, and the syndrome data created by error-detecting Pauli checks can be leveraged to guide quantum program outcomes toward regions that produce higher-fidelity final distributions. Using noisy simulation and a real QPU testbed, we show that dynamic quantum resource allocation with Pauli checks can outperform state-of-art mapping techniques, such as those that are noise-aware. Further, when applied toward the Quantum Approximate Optimization Algorithm, techniques guided by Pauli checks demonstrate the ability to increase circuit fidelity 11% on average, and up to 33%.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3092490451
source Free E- Journals
subjects Quantum theory
title Dynamic Resource Allocation with Quantum Error Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A05%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Dynamic%20Resource%20Allocation%20with%20Quantum%20Error%20Detection&rft.jtitle=arXiv.org&rft.au=Quinn%20Langfitt&rft.date=2024-12-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3092490451%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092490451&rft_id=info:pmid/&rfr_iscdi=true