A two‐step estimation procedure for semiparametric mixture cure models
In survival analysis, cure models have been developed to account for the presence of cured subjects that will never experience the event of interest. Mixture cure models with a parametric model for the incidence and a semiparametric model for the survival of the susceptibles are particularly common...
Gespeichert in:
Veröffentlicht in: | Scandinavian journal of statistics 2024-09, Vol.51 (3), p.987-1011 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1011 |
---|---|
container_issue | 3 |
container_start_page | 987 |
container_title | Scandinavian journal of statistics |
container_volume | 51 |
creator | Musta, Eni Patilea, Valentin Van Keilegom, Ingrid |
description | In survival analysis, cure models have been developed to account for the presence of cured subjects that will never experience the event of interest. Mixture cure models with a parametric model for the incidence and a semiparametric model for the survival of the susceptibles are particularly common in practice. Because of the latent cure status, maximum likelihood estimation is performed via the iterative EM algorithm. Here, we focus on the cure probabilities and propose a two‐step procedure to improve upon the maximum likelihood estimator when the sample size is not large. The new method is based on presmoothing by first constructing a nonparametric estimator and then projecting it on the desired parametric class. We investigate the theoretical properties of the resulting estimator and show through an extensive simulation study for the logistic‐Cox model that it outperforms the existing method. Practical use of the method is illustrated through two melanoma datasets. |
doi_str_mv | 10.1111/sjos.12713 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3092454949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092454949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2963-2466a38c3a3a42e24e89b771d07ead331a87ed0e7ace1c4441fe48bb9a828ff03</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqWw4QSR2CGl-IUfy6oCCqrURWFtuc5ESpTUwU5VuuMInJGT4BDWzGJmMd_M_PMjdE3wjKS4i7WPM0IlYSdoQriQueZCn6IJZpjlQml1ji5irDEmghM1Qct51h_89-dX7KHLIPZVa_vK77IueAfFPkBW-pBFaKvOBttCHyqXtdVHP7TckFpfQBMv0VlpmwhXf3WK3h4fXhfLfLV-el7MV7mjWrCcciEsU45ZZjkFykHprZSkwBJswRixSkKBQVoHxHHOSQlcbbfaKqrKErMpuhn3JoHv-yTY1H4fdumkYVhTfs8114m6HSkXfIwBStOF9Fk4GoLN4JQZnDK_TiWYjPChauD4D2k2L-vNOPMDayJtQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092454949</pqid></control><display><type>article</type><title>A two‐step estimation procedure for semiparametric mixture cure models</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Musta, Eni ; Patilea, Valentin ; Van Keilegom, Ingrid</creator><creatorcontrib>Musta, Eni ; Patilea, Valentin ; Van Keilegom, Ingrid</creatorcontrib><description>In survival analysis, cure models have been developed to account for the presence of cured subjects that will never experience the event of interest. Mixture cure models with a parametric model for the incidence and a semiparametric model for the survival of the susceptibles are particularly common in practice. Because of the latent cure status, maximum likelihood estimation is performed via the iterative EM algorithm. Here, we focus on the cure probabilities and propose a two‐step procedure to improve upon the maximum likelihood estimator when the sample size is not large. The new method is based on presmoothing by first constructing a nonparametric estimator and then projecting it on the desired parametric class. We investigate the theoretical properties of the resulting estimator and show through an extensive simulation study for the logistic‐Cox model that it outperforms the existing method. Practical use of the method is illustrated through two melanoma datasets.</description><identifier>ISSN: 0303-6898</identifier><identifier>EISSN: 1467-9469</identifier><identifier>DOI: 10.1111/sjos.12713</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Algorithms ; cure model ; logistic model ; Maximum likelihood estimation ; Maximum likelihood estimators ; Mixtures ; presmoothing ; Survival ; survival analysis</subject><ispartof>Scandinavian journal of statistics, 2024-09, Vol.51 (3), p.987-1011</ispartof><rights>2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Board of the Foundation of the Scandinavian Journal of Statistics.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2963-2466a38c3a3a42e24e89b771d07ead331a87ed0e7ace1c4441fe48bb9a828ff03</cites><orcidid>0000-0001-8827-7642</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fsjos.12713$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fsjos.12713$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Musta, Eni</creatorcontrib><creatorcontrib>Patilea, Valentin</creatorcontrib><creatorcontrib>Van Keilegom, Ingrid</creatorcontrib><title>A two‐step estimation procedure for semiparametric mixture cure models</title><title>Scandinavian journal of statistics</title><description>In survival analysis, cure models have been developed to account for the presence of cured subjects that will never experience the event of interest. Mixture cure models with a parametric model for the incidence and a semiparametric model for the survival of the susceptibles are particularly common in practice. Because of the latent cure status, maximum likelihood estimation is performed via the iterative EM algorithm. Here, we focus on the cure probabilities and propose a two‐step procedure to improve upon the maximum likelihood estimator when the sample size is not large. The new method is based on presmoothing by first constructing a nonparametric estimator and then projecting it on the desired parametric class. We investigate the theoretical properties of the resulting estimator and show through an extensive simulation study for the logistic‐Cox model that it outperforms the existing method. Practical use of the method is illustrated through two melanoma datasets.</description><subject>Algorithms</subject><subject>cure model</subject><subject>logistic model</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><subject>Mixtures</subject><subject>presmoothing</subject><subject>Survival</subject><subject>survival analysis</subject><issn>0303-6898</issn><issn>1467-9469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kEtOwzAQhi0EEqWw4QSR2CGl-IUfy6oCCqrURWFtuc5ESpTUwU5VuuMInJGT4BDWzGJmMd_M_PMjdE3wjKS4i7WPM0IlYSdoQriQueZCn6IJZpjlQml1ji5irDEmghM1Qct51h_89-dX7KHLIPZVa_vK77IueAfFPkBW-pBFaKvOBttCHyqXtdVHP7TckFpfQBMv0VlpmwhXf3WK3h4fXhfLfLV-el7MV7mjWrCcciEsU45ZZjkFykHprZSkwBJswRixSkKBQVoHxHHOSQlcbbfaKqrKErMpuhn3JoHv-yTY1H4fdumkYVhTfs8114m6HSkXfIwBStOF9Fk4GoLN4JQZnDK_TiWYjPChauD4D2k2L-vNOPMDayJtQw</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Musta, Eni</creator><creator>Patilea, Valentin</creator><creator>Van Keilegom, Ingrid</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8827-7642</orcidid></search><sort><creationdate>202409</creationdate><title>A two‐step estimation procedure for semiparametric mixture cure models</title><author>Musta, Eni ; Patilea, Valentin ; Van Keilegom, Ingrid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2963-2466a38c3a3a42e24e89b771d07ead331a87ed0e7ace1c4441fe48bb9a828ff03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>cure model</topic><topic>logistic model</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><topic>Mixtures</topic><topic>presmoothing</topic><topic>Survival</topic><topic>survival analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Musta, Eni</creatorcontrib><creatorcontrib>Patilea, Valentin</creatorcontrib><creatorcontrib>Van Keilegom, Ingrid</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scandinavian journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Musta, Eni</au><au>Patilea, Valentin</au><au>Van Keilegom, Ingrid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A two‐step estimation procedure for semiparametric mixture cure models</atitle><jtitle>Scandinavian journal of statistics</jtitle><date>2024-09</date><risdate>2024</risdate><volume>51</volume><issue>3</issue><spage>987</spage><epage>1011</epage><pages>987-1011</pages><issn>0303-6898</issn><eissn>1467-9469</eissn><abstract>In survival analysis, cure models have been developed to account for the presence of cured subjects that will never experience the event of interest. Mixture cure models with a parametric model for the incidence and a semiparametric model for the survival of the susceptibles are particularly common in practice. Because of the latent cure status, maximum likelihood estimation is performed via the iterative EM algorithm. Here, we focus on the cure probabilities and propose a two‐step procedure to improve upon the maximum likelihood estimator when the sample size is not large. The new method is based on presmoothing by first constructing a nonparametric estimator and then projecting it on the desired parametric class. We investigate the theoretical properties of the resulting estimator and show through an extensive simulation study for the logistic‐Cox model that it outperforms the existing method. Practical use of the method is illustrated through two melanoma datasets.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/sjos.12713</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-8827-7642</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-6898 |
ispartof | Scandinavian journal of statistics, 2024-09, Vol.51 (3), p.987-1011 |
issn | 0303-6898 1467-9469 |
language | eng |
recordid | cdi_proquest_journals_3092454949 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms cure model logistic model Maximum likelihood estimation Maximum likelihood estimators Mixtures presmoothing Survival survival analysis |
title | A two‐step estimation procedure for semiparametric mixture cure models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20two%E2%80%90step%20estimation%20procedure%20for%20semiparametric%20mixture%20cure%20models&rft.jtitle=Scandinavian%20journal%20of%20statistics&rft.au=Musta,%20Eni&rft.date=2024-09&rft.volume=51&rft.issue=3&rft.spage=987&rft.epage=1011&rft.pages=987-1011&rft.issn=0303-6898&rft.eissn=1467-9469&rft_id=info:doi/10.1111/sjos.12713&rft_dat=%3Cproquest_cross%3E3092454949%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092454949&rft_id=info:pmid/&rfr_iscdi=true |